zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sliding mode synchronization of an uncertain fractional order chaotic system. (English) Zbl 1189.34011
Summary: Synchronization of chaotic and uncertain Duffing-Holmes system has been done using the sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but also a rather simple stability analysis is performed. The latter is usually a complicated task for uncertain nonlinear chaotic systems.
MSC:
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
93B52Feedback control
37N35Dynamical systems in control
34D06Synchronization
37D45Strange attractors, chaotic dynamics
References:
[1]Yang, T.: A survey of chaotic secure communication systems, International journal of computational cognition 2, No. 2, 81-130 (2004)
[2]Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K.: Chaos in a fractional order Chua’s system, IEEE transactions CAS-I 42, 485-490 (1995)
[3]P. Arena, R. Caponetto, L. Fortuna, D. Porto, Chaos in a fractional order Duffing system, in: Proceedings ECCTD, Budapest, 1997, pp. 1259–1262
[4]Ahmad, W. M.; Sprott, J. C.: Chaos in fractional-order autonomous nonlinear systems, Chaos, solitons fractals 16, 339-351 (2003) · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[5]Lu, J. G.; Chen, G.: A note on the fractional-order Chen system, Chaos, solitons fractals 27, No. 3, 685-688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[6]Lu, J. G.: Chaotic dynamics of the fractional-order Lü system and its synchronization, Physics letter A 354, No. 4, 305-311 (2006)
[7]Li, C.; Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations, Physica A: statistical mechanics and its applications 341, 55-61 (2004)
[8]Lu, J. G.: Chaotic dynamics and synchronization of fractional-order arneodo’s systems, Chaos, solitons fractals 26, No. 4, 1125-1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[9]Sheu, L. J.; Chen, H. K.; Chen, J. H.; Tam, L. M.; Chen, W. C.; Lin, K. T.; Kang, Y.: Chaos in the Newton-leipnik system with fractional order, Chaos, solitons fractals 36, 98-103 (2005) · Zbl 1152.37319 · doi:10.1016/j.chaos.2006.06.013
[10]Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Physic review letter 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[11]Deng, W.; Li, C.: Chaos synchronization of the fractional Lu system, Physica A 353, 61-72 (2005)
[12]Utkin, V. I.: Variable structure systems with sliding mode, IEEE transaction in automatic control 22, 212-222 (1977) · Zbl 0382.93036 · doi:10.1109/TAC.1977.1101446
[13]J. Phuah, J. Lu, T. Yahagi, Chattering free sliding mode control in magnetic levitation system, IEEJ Transaction EIS, 125(4) 600–606
[14]Ertugrul, M.; Kaynak, O.: Neuro-sliding mode control of robotic manipulators, Mechatronics 10, 239-263 (2000)
[15]Slotine, J. E.; Sastry, S. S.: Tracking control of nonlinear systems using sliding surface with application to robotic manipulators, International journal of control 38, 465-492 (1983) · Zbl 0519.93036 · doi:10.1080/00207178308933088
[16]Podlubny, I.: Fractional differential equations, (1999)
[17]Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.: Equilibrium points, stability and numerical solutions of fractional order predator–prey and rabies models, Journal of mathematical analysis and applications 325, No. 1, 542-553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[18]Matignon, D.: Stability results for fractional differential equations with applications to control processing, Ieee-smc 2, 963-968 (1996)
[19]Slotine, J. J. E.: Applied nonlinear control, (1991) · Zbl 0753.93036
[20]Chang, W. -D.; Yan, J. -J.: Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems, Chaos, solitons fractals 26, No. 1, 167-175 (2005) · Zbl 1122.93340 · doi:10.1016/j.chaos.2004.12.013