zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The critical exponent for an ordinary fractional differential problem. (English) Zbl 1189.34013
Summary: We consider the Cauchy problem for an ordinary fractional differential inequality with a polynomial nonlinearity with variable coefficient. A nonexistence result is proved and the critical exponent separating existence from nonexistence is found. This is proved in the absence of any regularity assumptions.
MSC:
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
45J05Integro-ordinary differential equations
References:
[1]R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., Available online · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[2]Furati, K. M.; Tatar, N. -E.: An existence result for a nonlocal fractional differential problem, J. fract. Calc. 26, 43-51 (2004) · Zbl 1101.34001
[3]Furati, K. M.; Tatar, N. -E.: Behavior of solutions for a weighted Cauchy-type fractional differential problem, J. fract. Calc. 28, 23-42 (2005) · Zbl 1131.26304
[4]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006)
[5]Kilbas, A. A.; Trujillo, J. J.: Differential equations of fractional order: methods, results and problems I, Appl. anal. 78, No. 1–2, 153-192 (2001) · Zbl 1031.34002 · doi:10.1080/00036810108840931
[6]Kilbas, A. A.; Trujillo, J. J.: Differential equations of fractional order: methods, results and problems II, Appl. anal. 81, No. 2, 435-493 (2001) · Zbl 1033.34007 · doi:10.1080/0003681021000022032
[7]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[8]Kirane, M.; Laskri, Y.; Tatar, N. -E.: Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. math. Anal. appl. 312, No. 2, 488-501 (2005) · Zbl 1135.35350 · doi:10.1016/j.jmaa.2005.03.054
[9]Kirane, M.; Tatar, N. -E.: Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. anal. Anwendungen 25, 131-142 (2006) · Zbl 1106.26009 · doi:10.4171/ZAA/1281
[10]Kirane, M.; Tatar, N. -E.: Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions, Siberian J. Math. 48, No. 3, 477-488 (2007) · Zbl 1164.35352 · doi:emis:journals/SMZ/2007/03/593.htm
[11]Kirane, M.; Tatar, N. -E.: Nonexistence for the Laplace equation with a dynamical boundary condition of fractional type, Siberian math. J. 48, No. 5, 849-856 (2007) · Zbl 1164.35360 · doi:emis:journals/SMZ/2007/05/1056.html
[12]Tatar, N. -E.: A wave equation with fractional damping, Z. anal. Anwendungen 22, No. 3, 609-617 (2003) · Zbl 1059.35084 · doi:10.4171/ZAA/1165
[13]Mitidieri, E.; Pohozaev, S.: A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov inst. Math. 234, 1-383 (2001) · Zbl 0987.35002
[14]Podlubny, I.: Fractional differential equations, Math. in sci. And eng. 198 (1999) · Zbl 0924.34008