zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of regularly varying solutions with nonzero indices of half-linear differential equations with retarded arguments. (English) Zbl 1189.34121

Summary: Sharp conditions are established for the existence of a pair of regularly varying solutions with nonzero indices of half-linear functional differential equations of the type

(|x ' (t)| α sgnx ' (t)) ' =q(t)|x(g(t))| α sgnx(g(t)),α>0,g(t)>0,g(t)<t·

MSC:
34K05General theory of functional-differential equations
References:
[1]Howard, H. C.; Marić, V.: Regularity and nonoscillation of solutions of second order linear differential equations, Bull. T. CXIV de acad. Serbe sci. Et arts, classe sci. Mat. nat. Sci. math. 22, 85-98 (1997) · Zbl 0947.34015
[2]Howard, H. C.; Marić, V.; Radašin, Z.: Asymptotics of nonoscillatory solutions of second order linear differential equations, Zbornik rad. Prirod. mat. Fak. univ. Novi sad, ser. Mat. 20, 107-116 (1990) · Zbl 0745.34027
[3]Jaroš, J.; Kusano, T.: Remarks on the existence of regularly varying solutions for second order linear differential equations, Publ. inst. Math. (Beograd) 72, No. 86, 113-118 (2002) · Zbl 1052.34042 · doi:10.2298/PIM0272113J
[4]Jaroš, J.; Kusano, T.; Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation, Results math. 43, 129-149 (2003) · Zbl 1047.34034
[5]Kusano, T.; Marić, V.: On a class of functional differential equations having slowly varying solutions, Publ. inst. Math. (Beograd) 80, No. 94, 207-217 (2006) · Zbl 1164.34488 · doi:10.2298/PIM0694207K
[6]Kusano, T.; Marić, V.: Slowly varying solutions of functional differential equations with retarded and advanced arguments, Georgian math. J. 14, 301-314 (2007) · Zbl 1152.34043
[7]Kusano, T.; Marić, V.: Regularly varying solutions to functional differential equations with deviating arguments, Bull. T. CXXXIV de acad serbe sci. Et arts, classe sci. Mat. nat. Sci. math. 32, 105-128 (2007) · Zbl 1199.34329
[8]Marić, V.: Regular variation and differential equations, Lecture notes in mathematics 1726 (2000)
[9]Marić, V.; Tomić, M.: Asymptotic properties of solutions of the equation y”=f(x)ϕ(y), Math. Z. 149, 261-266 (1976)
[10]Marić, V.; Tomić, M.: A trichotomy of solutions of second order linear differential equations, Zbornik rad. Prirod.-mat. Fak. univ. Novi sad, ser. Mat. 14, 1-11 (1984) · Zbl 0597.34060
[11]Marić, V.; Tomić, M.: A classification of solutions of second order linear differential equations by means of regularly varying functions, Publ. inst. Math. (Beograd) 48, No. 62, 199-207 (1990) · Zbl 0722.34007
[12]Marić, V.; Tomić, M.: Slowly varying solutions of second order linear differential equations, Publ. inst. Math. (Beograd) 58, No. 72, 129-136 (1995) · Zbl 0965.34044
[13]Došlý, O.; Řehák, P.: Half-linear differential equations, North-holland mathematics studies 202 (2005)
[14]Tanigawa, T.: Regularly varying solutions of half-linear differential equations with retarded argument, Acta math. Hungar. 120, No. 1–2, 53-78 (2008) · Zbl 1199.34413 · doi:10.1007/s10474-007-7101-7