zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. (English) Zbl 1189.35151
Summary: We investigate possible scenarios of pattern formations in reaction-diffusion systems with time fractional derivatives. Linear stability analysis is performed for different values of derivative orders. Results of qualitative analysis are confirmed by numerical simulations of specific partial differential equations. Most attention is paid to two models: a fractional order reaction diffusion system with Bonhoeffer-van der Pol kinetics and to the Brusselator model.
35K57Reaction-diffusion equations
35R11Fractional partial differential equations
26A33Fractional derivatives and integrals (real functions)
45K05Integro-partial differential equations
[1]Zaslavsky, G. M.: Chaos, fractional kinetics, and anomalous transport, Phys. rep. 371, 461-580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[2]Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. rep. 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[3]Agrawal, O. P.; Machado, J. A. Tenreiro; Sabatier, J.: Advances in fractional calculus: theoretical developments and applications in physics and engineering, (2007)
[4]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[5]Uchaikin, V. V.: Fractional derivative method, (2008)
[6]Henry, B. I.; Langlands, T. A. M.; Wearne, S. L.: Turing pattern formation in fractional activator–inhibitor systems, Phys. rev. E 72, 026101 (2005)
[7]Henry, B. I.; Langlands, T. A. M.; Wearne, S. L.: Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations, Phys. rev. E 74, 031116 (2006)
[8]Gafiychuk, V.; Datsko, B.: Pattern formation in a fractional reaction–diffusion system, Physica A 365, 300-306 (2006)
[9]Gafiychuk, V.; Datsko, B.: Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems, Phys. rev. E 75, No. R, 055201 (2007)
[10]Gafiychuk, V.; Datsko, B.: Inhomogeneous oscillatory structures in fractional reaction–diffusion systems, Phys. lett. A 372, 619-622 (2008) · Zbl 1217.35103 · doi:10.1016/j.physleta.2007.07.071
[11]Gafiychuk, V.; Datsko, B.; Meleshko, V.: Mathematical modeling of time fractional reaction–diffusion systems, J. comput. Appl. math. 372, 215-225 (2008) · Zbl 1152.45008 · doi:10.1016/j.cam.2007.08.011
[12]Golovin, A. A.; Matkovsky, B. J.; Volpert, V. A.: Turing pattern formation in the Brusselator model with superdiffusion, SIAM J. Appl. math. 60, 251-272 (2008) · Zbl 1170.35053 · doi:10.1137/070703454
[13]Eule, S.; Friedrich, R.; Jenko, F.; Sokolov, I. M.: Continuous-time random walks with internal dynamics and subdiffusive reaction-diffusion equations, Phys. rev. E 78, No. R, 060102 (2008)
[14]Nec, Y.; Nepomnyashchy, A. A.; Golovin, A. A.: Oscillatory instability in super-diffusive reaction-diffusion systems: fractional amplitude and phase diffusion equations, Epl 82, 58003 (2008)
[15]Nicolis, G.; Prigogine, I.: Self-organization in non-equilibrium systems, (1977)
[16]Cross, M. C.; Hohenberg, P. C.: Pattern formation outside of equilibrium, Rev. modern phys. 65, 851-1112 (1993)
[17]Kerner, B. S.; Osipov, V. V.: Autosolitons, (1994)
[18]Podlubny, I.: Fractional differential equations, (1999)
[19]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[20]Zhou, Y.; Jiao, F.; Li, J.: Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear anal. TMA 71, 3249-3256 (2009) · Zbl 1177.34084 · doi:10.1016/j.na.2009.01.202
[21]Ahmad, B.; Wearne, J. J. Nieto: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Boundary value problems 2009, 708576 (2009) · Zbl 1167.45003 · doi:10.1155/2009/708576