zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Allee effect and bistability in a spatially heterogeneous predator-prey model. (English) Zbl 1189.35337
Summary: A spatially heterogeneous reaction-diffusion system modelling predator-prey interaction is studied, where the interaction is governed by a Holling type II functional response. Existence of multiple positive steady states and global bifurcation branches are examined as well as related dynamical behavior. It is found that while the predator population is not far from a constant level, the prey population could be extinguished, persist or blow up depending on the initial population distributions, the various parameters in the system, and the heterogeneous environment. In particular, our results show that when the prey growth is strong, the spatial heterogeneity of the environment can play a dominant role for the presence of the Allee effect. Our mathematical analysis relies on bifurcation theory, topological methods, various comparison principles and elliptic estimates. We combine these methods with monotonicity arguments to the system through the use of some new auxiliary scalar equations, though the system itself does not keep an order structure as the competition system does. Among other things, this allows us to obtain partial descriptions of the dynamical behavior of the system.
MSC:
35Q92PDEs in connection with biology and other natural sciences
35J57Second-order elliptic systems, boundary value problems
35B32Bifurcation (PDE)
35B09Positive solutions of PDE
92D25Population dynamics (general)
35B40Asymptotic behavior of solutions of PDE