zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Prediction of multivariate chaotic time series with local polynomial fitting. (English) Zbl 1189.37090
Summary: To improve the prediction accuracy of complex multivariate chaotic time series, a novel scheme formed on the basis of multivariate local polynomial fitting with the optimal kernel function is proposed. According to Takens Theorem, a chaotic time series is reconstructed into vector data, multivariate local polynomial regression is used to fit the predicted complex chaotic system, then the regression model parameters with the least squares method based on embedding dimensions are estimated,and the prediction value is calculated. To evaluate the results, the proposed multivariate chaotic time series predictor based on multivariate local polynomial model is compared with a univariate predictor with the same numerical data. The simulation results obtained by the Lorenz system show that the prediction mean squares error of the multivariate predictor is much smaller than the univariate one, and is much better than the existing three methods. Even if the last half of the training data are used in the multivariate predictor, the prediction mean squares error is smaller than that of the univariate predictor.
37M10Time series analysis (dynamical systems)
62M10Time series, auto-correlation, regression, etc. (statistics)
62M20Prediction; filtering (statistics)
[1]Maguire, L. P.; Roche, B.; Mcginnity, T. M.; Mcdaid, L. J.: Predicting a chaotic time series using fuzzy neural network, Information sciences 112, No. 1, 125-136 (1998) · Zbl 0953.68590 · doi:10.1016/S0020-0255(98)10026-9
[2]Leung, Henry; Lo, Titus; Wang, Sichun: Prediciton of noisy chaotic time series using an optimal radialbasis function neural network, IEEE transactions on neural networks 12, No. 5, 1163-1172 (2001)
[3]Han, Min; Xi, Jianhui; Xu, Shiguo; Yin, Fuliang: Prediction of chaotic time series based on the recurrent predictor neural network, IEEE transactions on signal processing 52, No. 12, 3409-3416 (2004)
[4]Tekbas, Onder Haluk: Modelling of chaotic time series using a variable-length window approach, Chaos, solitions fractals 29, No. 2, 277-281 (2006) · Zbl 1095.37042 · doi:10.1016/j.chaos.2005.10.005
[5]Zhang, Bai; Chen, Maoyin; Zhou, Donghua; Li, Zhengxi: Particle-filter-based estimation and prediction of chaotic states, Chaos, solitions fractals 32, No. 4, 1491-1498 (2007) · Zbl 1129.37018 · doi:10.1016/j.chaos.2005.11.098
[6]Fan, J.; Gijbels, I.: Local polynomial modelling and its applications, (1996)
[7]Fan, J.; Zhang, W.: Statistical estimation in varying coefficient models, The annals of statistics 27, 1491-1518 (1999) · Zbl 0977.62039 · doi:10.1214/aos/1017939139
[8]Cao, Liangyue; Mee, A.; Judd, K.: Dynamics from multivariate time series, Physia D 121, No. 1–2, 75-88 (1998) · Zbl 0933.62083 · doi:10.1016/S0167-2789(98)00151-1
[9]Kennel, M. B.; Brown, R.; Abarbanel, H. D. I.: Determining embedding dimension for phase space reconstruction using a geometric construction, Physical review A 151, No. 5, 225-233 (1990)
[10]Boccaletti, S.; Valladares, D. L.; Pecora, L. M.: Reconstructing embedding spaces of coupled dynamical systems from multivariate data, Physical review E 65, No. 1, 1-4 (2002)
[11]Kantz, H.; Schreiber, T.: Nonlinear time series analysis, (1997)
[12]Fraser, A. M.; Swinney, H. L.: Independent coordinates for strange attractors from mutual information, Physical review A 33, No. 2, 1134-1140 (1986) · Zbl 1184.37027 · doi:10.1103/PhysRevA.33.1134