zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Maps completely preserving idempotents and maps completely preserving square-zero operators. (English) Zbl 1189.47035
Summary: Let X,Y be real or complex Banach spaces with dimension greater than 2 and let 𝒜, be standard operator algebras on X and Y, respectively. In this paper, we show that every map completely preserving idempotence from 𝒜 onto is either an isomorphism or (in the complex case) a conjugate isomorphism; every map completely preserving square-zero from 𝒜 onto is a scalar multiple of either an isomorphism or (in the complex case) a conjugate isomorphism.
47B49Transformers, preservers (operators on spaces of operators)
[1]B. Aupetit, Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, Journal of the London Mathematical Society. Second Series 62 (2000), 917–924. · Zbl 1070.46504 · doi:10.1112/S0024610700001514
[2]B. Aupetit and H. du Toit Mouton, Spectrum preserving linear mappings in Banach algebras, Studia Mathematica 109 (1994), 91–100.
[3]Z.-F. Bai and J.-C. Hou, Linear maps and additive maps that preserve operators annihilated by a polynomial, Journal of Mathematical Analysis and Applications 271 (2002), 139–154. · Zbl 1045.47031 · doi:10.1016/S0022-247X(02)00105-1
[4]Z. Bai and J. Hou, Maps preserving zero-products or Jordan zero-products, Chinese Annals of Mathematics 29A (2008), 663–670.
[5]M. Brešar and P. Šemrl, Invertibility preserving maps preserve idempotents, Michigan Mathematical Journal 45 (1998), 483–488. · Zbl 0961.47040 · doi:10.1307/mmj/1030132294
[6]J. Cui and J. Hou, Linear maps on von Neumann algebras preserving zero products or tr-rank, Bulletin of the Australian Mathematical Society 65 (2002), 79–91. · Zbl 1054.47027 · doi:10.1017/S0004972700020086
[7]J. Cui and J. Hou, A characterization of homomorphisms between Banach algebras, Acta Mathematica Sinica (English Series) 20 (2004), 761–768. · Zbl 1076.46037 · doi:10.1007/s10114-004-0312-8
[8]J. Cui and J. Hou, An algebraic invariant for Jordan automorphisms on B(H), Science in China. Series A 48(12) (2005), 1585–1596. · Zbl 1218.47059 · doi:10.1360/03ys0298
[9]E. G. Effros and Z.-J. Ruan, Operator Spaces, Clarendon Press, Oxford, 2000.
[10]D. Hadwin and D. Larson, Completely rank nonincreasing linear maps, Journal of Functional Analysis 199 (2003), 263–277. · Zbl 1026.46043 · doi:10.1016/S0022-1236(02)00091-5
[11]D. Hadwin, J. Hou and H. Yousefi, Completely rank-nonincreasing linear maps on spaces of operators, Linear Algebra and its Applications 383 (2004), 213–232. · Zbl 1069.47039 · doi:10.1016/j.laa.2004.01.002
[12]J. Hou, Rank-preserving linear maps on B(X), Science in China. Series A 32 (1989), 929–940.
[13]J. Hou and J. Cui, Introduction to the Linear Maps on Operator Algebras, Science Press, Beijing, 2002 (in Chinese).
[14]J. Hou and L. Huang, Additive maps between standard operator algebras compressing certain spectral functions, Acta Mathematica Sinica (Eng. Ser.) 24 (2008), 2041–2048. · Zbl 1169.47029 · doi:10.1007/s10114-008-6428-5
[15]J. Hou and L. Huang, Characterizations of isomorphisms: maps completely preserving invertibility or spectrum, Journal of Mathematical Analysis and Applications 359 (2009), 81–87. · Zbl 1181.47036 · doi:10.1016/j.jmaa.2009.05.041
[16]L. Huang and J. Hou, Maps preserving spectral functions of operator products, Chinese Annals of Mathematics 28A(6) (2007), 769–780.
[17]A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, Journal of Functional Analysis 66 (1986), 255–261. · Zbl 0589.47003 · doi:10.1016/0022-1236(86)90073-X
[18]B. Kuzma, Additive idempotence preservers, Linear Algebra and its Applications 355 (2002), 103–117. · Zbl 1045.47033 · doi:10.1016/S0024-3795(02)00340-3
[19]B. Kuzma, Additive mappings preserving rank-one idempotents, Acta Mathematica Sinica (English Series) 21 (2005), 1399–1406. · Zbl 1125.47028 · doi:10.1007/s10114-005-0598-1
[20]B. Kuzma, Additive spectrum compressors, Journal of Mathematical Analysis and Applications 304 (2005), 13–21. · Zbl 1067.47049 · doi:10.1016/j.jmaa.2004.09.004
[21]C. K. Li and N. K. Tsing, Linear preserver problems: A brief introduction and some special techniques, Linear Algebra and its Applications 162–164 (1992), 217–235. · Zbl 0762.15016 · doi:10.1016/0024-3795(92)90377-M
[22]L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn’s version of Wigner’s Theorem, Journal of Functional Analysis 194 (2002), 248–262. · Zbl 1010.46023 · doi:10.1006/jfan.2002.3970
[23]P. G. Ovchinnikov, Automorphisms of the poset of skew projections, Journal of Functional Analysis 115 (1993), 184–189. · Zbl 0806.46069 · doi:10.1006/jfan.1993.1086
[24]P. Šemrl, Maps on idempotents, Studia Mathematica 169 (2005), 21–44. · Zbl 1088.47030 · doi:10.4064/sm169-1-2
[25]P. Šemrl, Maps on matrix spaces, Linear Algebra and its Applications 413 (2006), 364–393. · Zbl 1090.15002 · doi:10.1016/j.laa.2005.03.011
[26]P. Šemrl, Maps on idempotent operators, Banach Center Publications 75 (2007), 289–301.
[27]A. R. Sourour, Invertibility preserving linear maps on L(X), Transactions of the American Mathematical Society 348 (1996), 13–30. · Zbl 0843.47023 · doi:10.1090/S0002-9947-96-01428-6