zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Common fixed points under contractive conditions in cone metric spaces. (English) Zbl 1189.65119
Summary: The aim of this paper is to present coincidence point result for two mappings in cone metric space which satisfy new contractive conditions. Our results generalize fixed point theorems of G. Jungck [Am. Math. Mon. 83, 261–263 (1976; Zbl 0321.54025)], M. Abbas and G. Jungck [J. Math. Anal. Appl. 341, No. 1, 416–420 (2008; Zbl 1147.54022)] and B. Fisher [J. Univ. Kuwait, Sci. 8, 131–138 (1981; Zbl 0472.54030)] in cone metric spaces to symmetric spaces.

65J15Equations with nonlinear operators (numerical methods)
47H10Fixed point theorems for nonlinear operators on topological linear spaces
[1]Huang, L. G.; Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings, J. math. Anal. appl. 332, No. 2, 1468-1476 (2007) · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087
[2]Abbas, M.; Jungck, G.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. math. Anal. appl. 341, 416-420 (2008) · Zbl 1147.54022 · doi:10.1016/j.jmaa.2007.09.070
[3]Ilić, D.; Rakočević, V.: Common fixed points for maps on cone metric space, J. math. Appl. 341, 876-882 (2008) · Zbl 1156.54023 · doi:10.1016/j.jmaa.2007.10.065
[4]Rezapour, Sh.; Hamlbarani, R.: Some notes on the paper ”cone metric spaces and fixed point theorems of contractive mappings”, J. math. Anal. appl. 345, 719-724 (2008) · Zbl 1145.54045 · doi:10.1016/j.jmaa.2008.04.049
[5]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[6]Zhu, Jiang; Cho, Yeol Je; Kang, Shin Min: Equivalent contractive conditions in symmetric spaces, Comput. math. Appl. 50, 1621-1628 (2005) · Zbl 1080.47046 · doi:10.1016/j.camwa.2005.07.007
[7]Hicks, T. L.; Rhoades, B. E.: Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear anal. 36, 331-344 (1999) · Zbl 0947.54022 · doi:10.1016/S0362-546X(98)00002-9
[8]Jungck, G.: Commuting maps and fixed points, Amer. math. Monthly 83, 261-263 (1976) · Zbl 0321.54025 · doi:10.2307/2318216
[9]Fisher, B.: Four mappings with a common fixed point. (Arabic summary), J. univ. Kuwait sci. 8, 131-139 (1981) · Zbl 0472.54030