zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A multi-step differential transform method and application to non-chaotic or chaotic systems. (English) Zbl 1189.65170
Summary: The differential transform method (DTM) is an analytical and numerical method for solving a wide variety of differential equations and usually gets the solution in a series form. In this paper, we propose a reliable new algorithm of DTM, namely multi-step DTM, which will increase the interval of convergence for the series solution. The multi-step DTM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions for systems of differential equations. This new algorithm is applied to Lotka-Volterra, Chen and Lorenz systems. Then, a comparative study between the new algorithm, multi-step DTM, classical DTM and the classical Runge-Kutta method is presented. The results demonstrate reliability and efficiency of the algorithm developed.
MSC:
65L99Numerical methods for ODE
34C28Complex behavior, chaotic systems (ODE)
37D45Strange attractors, chaotic dynamics
References:
[1]Zhou, J. K.: Differential transformation and its applications for electrical circuits, (1986)
[2]Ayaz, Fatma: Solutions of the system of differential equations by differential transform method, Appl. math. Comput. 147, 547-567 (2004) · Zbl 1032.35011 · doi:10.1016/S0096-3003(02)00794-4
[3]Ayaz, Fatma: Application of differential transform method to differential-algebraic equations, Appl. math. Comput. 152, 649-657 (2004) · Zbl 1077.65088 · doi:10.1016/S0096-3003(03)00581-2
[4]Arikoglu, A.; Ozkol, I.: Solution of boundary value problems for integro-differential equations by using differential transform method, Appl. math. Comput. 168, 1145-1158 (2005) · Zbl 1090.65145 · doi:10.1016/j.amc.2004.10.009
[5]Bildik, N.; Konuralp, A.; Bek, F.; Kucukarslan, S.: Solution of different type of the partial differential equation by differential transform method and Adomian’s decomposition method, Appl. math. Comput. 127, 551-567 (2006) · Zbl 1088.65085 · doi:10.1016/j.amc.2005.02.037
[6]Arikoglu, A.; Ozkol, I.: Solution of difference equations by using differential transform method, Appl. math. Comput. 173, No. 1, 126-136 (2006)
[7]Arikoglu, A.; Ozkol, I.: Solution of differential difference equations by using differential transform method, Appl. math. Comput. 181, No. 1, 153-162 (2006) · Zbl 1148.65310 · doi:10.1016/j.amc.2006.01.022
[8]Liu, H.; Song, Y.: Differential transform method applied to high index differential-algebraic equations, Appl. math. Comput. 184, No. 2, 748-753 (2007) · Zbl 1115.65089 · doi:10.1016/j.amc.2006.05.173
[9]Momani, S.; Noor, M.: Numerical comparison of methods for solving a special fourth-order boundary value problem, Appl. math. Lett. 191, No. 1, 218-224 (2007) · Zbl 1193.65135 · doi:10.1016/j.amc.2007.02.081
[10]Hassan, I. H.: Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos solitons fractals 36, No. 1, 53-65 (2008) · Zbl 1152.65474 · doi:10.1016/j.chaos.2006.06.040
[11]Hassan, I.: Application to differential transformation method for solving systems of differential equations, Appl. math. Model. 32, No. 12, 2552-2559 (2008) · Zbl 1167.65417 · doi:10.1016/j.apm.2007.09.025
[12]El-Shahed, M.: Application of differential transform method to non-linear oscillatory systems, Commun. nonlinear sci. Numer. simul. 13, No. 8, 1714-1720 (2008)
[13]Odibat, Z.: Differential transform method for solving Volterra integral equation with separable kernels, Math. comput. Modelling 48, No. 7–8, 144-1149 (2008) · Zbl 1187.45003 · doi:10.1016/j.mcm.2007.12.022
[14]Momani, S.; Odibat, Z.; Erturk, V.: Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation, Phys. lett. A 370, No. 5–6, 379-387 (2007) · Zbl 1209.35066 · doi:10.1016/j.physleta.2007.05.083
[15]Erturk, V.; Momani, S.; Odibat, Z.: Application of generalized differential transform method to multi-order fractional differential equations, Commun. nonlinear sci. Numer. simul. 13, No. 8, 1642-1654 (2008) · Zbl 1221.34022 · doi:10.1016/j.cnsns.2007.02.006
[16]Odibat, Z.; Momani, S.: Generalized differential transform method for linear partial differential equations of fractional order, Appl. math. Lett. 21, No. 2, 194-199 (2008) · Zbl 1132.35302 · doi:10.1016/j.aml.2007.02.022
[17]Momani, S.; Odibat, Z.: A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula, J. comput. Appl. math. 220, No. 1–2, 85-95 (2008) · Zbl 1148.65099 · doi:10.1016/j.cam.2007.07.033
[18]Odibat, Z.; Momani, S.; Erturk, V.: Generalized differential transform method: application to differential equations of fractional order, Appl. math. Comput. 197, No. 2, 467-477 (2008) · Zbl 1141.65092 · doi:10.1016/j.amc.2007.07.068
[19]Kuo, B.; Lo, C.: Application of the differential transformation method to the solution of a damped system with high nonlinearity, Nonlinear anal. TMA 70, No. 4, 1732-1737 (2009) · Zbl 1168.34301 · doi:10.1016/j.na.2008.02.056
[20]Al-Sawalha, M.; Noorani, M.: Application of the differential transformation method for the solution of the hyperchaotic Rössler system, Commun. nonlinear sci. Numer. simul. 14, No. 4, 1509-1514 (2009)
[21]Chen, S.; Chen, C.: Application of the differential transformation method to the free vibrations of strongly non-linear oscillators, Nonlinear anal. RWA 10, No. 2, 881-888 (2009) · Zbl 1167.70328 · doi:10.1016/j.nonrwa.2005.06.010
[22]Kanth, A.; Aruna, K.: Two-dimensional differential transform method for solving linear and non-linear Schrödinger equations, Chaos solitons fractals 41, No. 5, 2277-2281 (2009) · Zbl 1198.81089 · doi:10.1016/j.chaos.2008.08.037
[23]Kanth, A.; Aruna, K.: Differential transform method for solving the linear and nonlinear Klein–Gordon equation, Comput. phys. Commun. 180, No. 5, 708-711 (2009) · Zbl 1198.81038 · doi:10.1016/j.cpc.2008.11.012
[24]Chen, C.; Ueta, T.: Yet another chaotic attractor, Internat. J. Bifur. chaos 9, No. 7, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[25]Ueta, T.; Chen, C.: Bifurcation analysis of Chen’s equation, Internat. J. Bifur. chaos 10, No. 8, 1917-1931 (2000) · Zbl 1090.37531 · doi:10.1142/S0218127400001183
[26]Lu, J.; Zhou, T.; Chen, G.; Zhang, S.: Local bifurcations of the Chen system, Internat. J. Bifur. chaos 12, No. 10, 2257-2270 (2002) · Zbl 1047.34044 · doi:10.1142/S0218127402005819
[27]Lorenz, E.: Deterministic nonperiodic flow, J. atmospheric sci. 20, 130-141 (1963)