zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Torsional flow of third grade fluid using modified homotopy perturbation method. (English) Zbl 1189.65177
Summary: This paper considers the steady flow of an incompressible third grade fluid between two vertical concentric rotating cylinders of infinite lengths. Modified Homotopy perturbation method is used to reduce the volume of tedious calculations involved to solve second order nonlinear differential equation. Special cases with one cylinder, inner or outer at rest (bounded domain case), and fluid flow at a rotating cylinder (unbounded domain case) are obtained. The effect of β, the non-dimensional number related to the material constants, ω, rotation of the cylinder and R, the ratio between radii of outer and inner cylinders, on the velocity profile are discussed and are shown graphically.
MSC:
65L99Numerical methods for ODE
76A05Non-Newtonian fluids
References:
[1]Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type: critical review and thermodynamic analysis, Int. J. Engrg. sci. 33, No. 5, 689-729 (1995) · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[2]Vajravelu, K.; Cannon, J. R.; Rollins, D.: Analytical and numerical solutions of nonlinear differential equations arising in non-Newtonian fluid flows, J. math. Anal. appl. 250, 204-221 (2000) · Zbl 0974.34017 · doi:10.1006/jmaa.2000.7078
[3]Vajravelu, K.; Cannon, J. R.; Rollins, D.; Leto, J.: On solutions of some non-linear differential equations arising in third grade fluid flows, Int. J. Engrg. sci. 40, 1571-1578 (2004)
[4]Akyildiz, F. Talay; Bellout, Hamid; Vajravelu, K.: Exact solutions of nonlinear differential equations arising in third grade fluid flows, Int. J. Non-linear mech. 39, 1571-1578 (2004)
[5]Odibat, Z. M.: A new modification of the homotopy perturbation method for linear and nonlinear operators, Appl. math. Comput. (2006)
[6]Papanastasiou, Tasos C.: Applied fluid mechanics, (1994) · Zbl 0790.76002
[7]Fosdick, R. L.; Rajagopal, K. R.: Thermodynamics and stability of fluids of third grade, Proc. roy. Soc. lond. A 339, 351 (1980) · Zbl 0441.76002 · doi:10.1098/rspa.1980.0005
[8]He, Jh.: Homotopy perturbation technique, Comput. meth. Appl. math. Engng. 178, 257-262 (1999)
[9]Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K.: Thin film flow of a third grade down an inclined plane by he’s homotopy perturbation method, Chaos solitons fractals (2006)
[10]He, Jh.: Homotopy perturbation method: A new non-linear analytical technique, Appl. math. Comput. 135, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[11]He, Jh.: A coupling method of homotopy technique and perturbation technique for non linear problems, Internat. J. Non-linear mech. 35, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[12]He, Jh.: Comparison of perturbation and homotopy perturbation and homotopy analysis method, Appl. math. Comput. 156, No. 135, 527-559 (2004) · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[13]Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K.: Thin film flow of a third grade on a moving belt by he’s homotopy perturbation method, Internat. J. Non-linear sci. Numer. simul. 7, No. 1, 7-14 (2006)
[14]Siddiqui, A. M.; Ahmad, M.; Ghori, Q. K.: Couette and Poiseuille flow for non-Newtonian fluids, Internat. J. Nonlinear sci. Numer. simul. 7, No. 1, 15-26 (2006)
[15]Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K.: Thin film flow of a fourth grade fluid down a vertical cylinder by he’s homotopy perturbation method, Physics letters A 352, 404-410 (2006)