zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Resonance in a rotor-spun composite yarn spinning process obtained using the variational iteration method. (English) Zbl 1189.65180
Summary: A nonlinear oscillator is established for the rotor-spun composite yarn spinning process. The oscillating frequencies in vertical and horizontal directions are obtained approximately using the variational iteration method. The condition for resonance is obtained. The presented study sheds light on the optimal design of the system.
MSC:
65L99Numerical methods for ODE
34A45Theoretical approximation of solutions of ODE
References:
[1]Pracek, S.: Theory of string motion in the textile process of yarn unwinding, Int. J. Nonlin. sci. Num. 8, No. 3, 451-460 (2007)
[2]Liu, Y.; Xu, L.: Controlling air vortex in air-vortex spinning by zeng–he model, Int. J. Nonlin. sci. Num. 7, 389-392 (2006)
[3]Zeng, Y. C.; Yu, C. W.: A flexible fiber model for dynamic simulation of fibers in high speed air flows, Int. J. Nonlin. sci. Num. 7, 427-430 (2006)
[4]Yang, Rui-Hua; Wang, Shan-Yuan: A linear dynamic model for rotor-spun composite yarn spinning process, J. phys.: conf. Ser. 96, 012039 (2007)
[5]Yang, Rui-Hua; Wang, Shan-Yuan: Nonlinear dynamic model of convergent point for rotor-spun composite yarn spinning process, Int. J. Nonlin. sci. Num. 9, No. 3, 271-274 (2008)
[6]Yang, Rui-Hua; Wang, Shan-Yuan: Determination of the convergent point in the rotor-spun composite yarn spinning process, Textile res. J. 79, No. 6, 555-557 (2009)
[7]He, J. H.: Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern phys. B 20, No. 10, 1141-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[8]Zhang, L. N.; He, J. H.: Resonance in sirospun yarn spinning using a variational iteration method, Comput. math. Appl. 54, No. 7–8, 1064-1066 (2007) · Zbl 1141.65373 · doi:10.1016/j.camwa.2006.12.050
[9]He, J. H.: Variational iteration method–some recent results and new interpretations, J. comput. Appl. math. 207, 3-17 (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009