zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of He’s amplitude-frequency formulation to a nonlinear oscillator with discontinuity. (English) Zbl 1189.65181
Summary: He’s amplitude-frequency formulation is used to obtain a periodic solution of a nonlinear oscillator with discontinuity. The accuracy arrives at 0.73% even when the amplitude tends to infinity.
65L99Numerical methods for ODE
34C15Nonlinear oscillations, coupled oscillators (ODE)
34C25Periodic solutions of ODE
[1]Wang, Shu-Qing; He, Ji-Huan: Nonlinear oscillator with discontinuity by parameter-expansion method, Chaos solitons and fractals 35, 688-691 (2008) · Zbl 1210.70023 · doi:10.1016/j.chaos.2007.07.055
[2]He, J. H.: International journal of modern physics B, International journal of modern physics B 20, 1141-1199 (2006)
[3]He, J. H.: Comment on ’he’s frequency formulation for nonlinear oscillators’, European journal of physics 29, L1-L4 (2008)
[4]He, Ji-Huan: An improved amplitude–frequency formulation for nonlinear oscillators, International journal of nonlinear sciences and numerical simulation 9, No. 2, 211-212 (2008)