zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Source term identification for an axisymmetric inverse heat conduction problem. (English) Zbl 1189.65215
Summary: We consider an inverse heat source problem of determining the heat source term from the final temperature history of a cylinder. This problem is ill-posed. A simplified Tikhonov regularization method is applied to formulate regularized solution, which is stably convergent to the exact one with a logarithmic type error estimate.
65M32Inverse problems (IVP of PDE, numerical methods)
35R30Inverse problems for PDE
65M30Improperly posed problems (IVP of PDE, numerical methods)
[1]Cannon, J. R.: Determination of an unknown heat source from overspecified boundary data, SIAM J. Numer. anew. 5, 275-286 (1968) · Zbl 0176.15403 · doi:10.1137/0705024
[2]Cannon, J. R.; Esteva, S. P.: An inverse problem for the heat equation, Inverse problems 2, 395-403 (1986) · Zbl 0624.35078 · doi:10.1088/0266-5611/2/4/007
[3]Duchateau, P.; Rundell, W.: Unicity in an inverse problem for an unknown reaction term in a reation-diffusion-equation, J. differential equations 59, 155-164 (1985) · Zbl 0564.35097 · doi:10.1016/0022-0396(85)90152-4
[4]Cannon, J. R.; Duchateau, P.: Structual identification of an unknown source term in a heat equation, Inverse problems 14, 535-551 (1998) · Zbl 0917.35156 · doi:10.1088/0266-5611/14/3/010
[5]Neto, A. J. Silva; Özisik, M. N.: Two-dimensional inverse heat conduction problem of estimating the time-varying strength of a line heat source, J. appl. Phys. 71, 5357-5362 (1992)
[6]Hettlich, F.; Rundell, W.: Identification of a discontinous source in the heat equation, Inverse problems 17, 1465-1482 (2001) · Zbl 0986.35129 · doi:10.1088/0266-5611/17/5/315
[7]Hadamard, J.: Lectures on Cauchy problem in linear partial differential equations, (1923) · Zbl 49.0725.04
[8]Cannon, J. R.; Esteva, S. P.: Uniqueness and stability of 3D heat source, Inverse problems 7, 57-62 (1991) · Zbl 0729.35144 · doi:10.1088/0266-5611/7/1/006
[9]Choulli, M.; Yarmamoto, M.: Conditional stability in determining a heat source, J. inverse ill-posed probl. 12, No. 3, 233-243 (2004) · Zbl 1081.35136 · doi:10.1515/1569394042215856
[10]Yi, Z.; Murio, D. A.: Source term identification in 1-D IHCP, Comput. math. Appl. 47, 1921-1933 (2004) · Zbl 1063.65102 · doi:10.1016/j.camwa.2002.11.025
[11]Yi, Z.; Murio, D. A.: Source term identification in 2-D IHCP, Comput. math. Appl. 47, 1517-1533 (2004)
[12]Farcas, A.; Lesnic, D.: The boundary-element method for the determination of a heat source dependent on one variable, J. eng. Math. 54, 247-253 (2006) · Zbl 1146.80007 · doi:10.1007/s10665-005-9023-0
[13]Fatullayev, A. G.: Numerical solution of the inverse problem of determining an unknown source term in a heat equation, Math. comput. Simulation 8, No. 2, 161-168 (2002)
[14]Dehghan, M.; Tatari, M.: Determination of a contral parameter in a one-dimensional parabolic equation using the method of radial basis functions, Math. comput. Modelling 8, No. 2, 161-168 (2002)
[15]Mahar, P. S.; Datta, B.: Optimal identification of ground-water pollution source and parameter estimate, J. water. Res. plan. Manag. 127, No. 1, 20-29 (2001)
[16]Constales, D.; Kacur, J.; Van, K. R.: Parameter identification by a single injection-extraction well, Inverse problems 18, 1605-1620 (2002) · Zbl 1023.35093 · doi:10.1088/0266-5611/18/6/312
[17]Li, G. S.; Ma, Y. C.; Li, K. T.: An inverse parabolic problem for nonlinear source term with nonlinear boundary condition, J. inverse ill-posed probl. 11, No. 4, 371-387 (2003) · Zbl 1048.35136 · doi:10.1163/156939403770862785
[18]Li, G. S.; Tan, Y. G.: A conditional stability for an inverse problem arising in groundwater pollution, J. chin. Univ. 14, No. 3, 217-225 (2005) · Zbl 1105.35145
[19]Trong, D. D.; Long, N. T.; Alain, P. N. D.: Nonhomogeneous heat equation: identification and regularization for the inhomogeneous term, J. math. Anal. appl. 312, 93-104 (2005) · Zbl 1087.35095 · doi:10.1016/j.jmaa.2005.03.037
[20]Liu, Y.: Cylinder functions, (1983)
[21]Carasso, A.: Determining surface temperature from interior observations, SIAM J. Appl. math. 42, 558-574 (1982) · Zbl 0498.35084 · doi:10.1137/0142040
[22]Fu, C. -L.: Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation, J. comput. Appl. math. 167, 449-463 (2004) · Zbl 1055.65106 · doi:10.1016/j.cam.2003.10.011
[23]Cheng, W.; Fu, C. L.; Qian, Z.: Two regularization methods for a spherically symmetric inverse heat conduction problem, Appl. math. Modelling 32, No. 4, 432-442 (2008)
[24]Cheng, W.; Fu, C. L.: Two regularization methods for an axisymmetric inverse heat conduction problem, J. inverse ill-posed probl. 17, 157-170 (2009) · Zbl 1160.35546 · doi:10.1515/JIIP.2009.014
[25]Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions, (1972) · Zbl 0543.33001 · doi:http://www.cs.bham.ac.uk/~aps/research/projects/as/
[26]Jiang, L. S.; Chen, Y. J.; Liu, X. H.; Yi, F. K.: Teaching materials to equation of mathematical physics, (1995)
[27]Kirsch, A.: An introduction to the mathematical theory of inverse problems, (1996)
[28]Cheng, W.; Fu, C. L.; Qian, Z.: A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem, Math. comput. Simulation 75, No. 3–4, 97-112 (2007) · Zbl 1122.65083 · doi:10.1016/j.matcom.2006.09.005
[29]Nair, M. T.; Tautenhahn, U.: Lavrentiev regularization for linear ill-posed problems under general source conditions, J. anal. Appl. 23, No. 1, 167-185 (2004) · Zbl 1063.65041 · doi:10.4171/ZAA/1192 · doi:http://www.heldermann.de/ZAA/ZAA23/ZAA231/zaa23008.htm