zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Study of convergence of homotopy perturbation method for systems of partial differential equations. (English) Zbl 1189.65246
Summary: The aim of this paper is convergence study of homotopy perturbation method for systems of nonlinear partial differential equations. The sufficient condition for convergence of the method is addressed. Since mathematical modeling of numerous scientific and engineering experiments lead to Brusselator and Burgers’ system of equations, it is worth trying new methods to solve these systems. We construct a new efficient recurrent relation to solve nonlinear Burgers’ and Brusselator systems of equations. Comparison of the results obtained by homotopy perturbation method with those of Adomian’s decomposition method and dual-reciprocity boundary element method leads to significant consequences. Two standard problems are used to validate the method.
MSC:
65M99Numerical methods for IVP of PDE
35Q53KdV-like (Korteweg-de Vries) equations
References:
[1]Wazwaz, Abdul-Majid: The decomposition method applied to systems of partial differential equations and to the reaction–diffusion Brusselator model, Applied mathematics and computation 110, 251-264 (2000) · Zbl 1023.65109 · doi:10.1016/S0096-3003(99)00131-9
[2]Ang, Whye-Teong: The two-dimensional reaction–diffusion Brusselator system: A dual-reciprocity boundary element solution, Engineering analysis with boundary elements 27, 897-903 (2003) · Zbl 1060.76599 · doi:10.1016/S0955-7997(03)00059-6
[3]Burger, J. M.: A mathematical model illustrating the theory of turbulence, (1948)
[4]Bahadir, A. Refik: A fully implicit finite-difference scheme for two dimensional Burgers equations, Applied mathematics and computation 137, 131-137 (2003) · Zbl 1027.65111 · doi:10.1016/S0096-3003(02)00091-7
[5]He, J. H.: Homotopy perturbation technique, Computer methods in applied mechanics and engineering 178, 257-262 (1999)
[6]He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems, International journal of non-linear mechanics 35, No. 1, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[7]He, J. H.: Comparison of homotopy perturbation method and homotopy analysis method, Applied mathematics and computation 156, 527-539 (2004) · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[8]He, J. H.: Homotopy perturbation method: A new nonlinear analytical technique, Applied mathematics and computation 135, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[9]He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied mathematics and computation 151, 287-292 (2004) · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[10]He, J. H.: Application of homotopy perturbation method to nonlinear wave equations, Chaos, solitons and fractals 26, 695-700 (2005) · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[11]He, J. H.: Homotopy perturbation method for solving boundary value problems, Physics letters A 350, 87-88 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[12]Wang, Q.: Homotopy perturbation method for fractional KdV-Burgers equation, Chaos, solitons and fractals 190, 1795-1802 (2007) · Zbl 1122.65397 · doi:10.1016/j.amc.2007.02.065
[13]Ganji, D. D.; Rafei, M.: Solitary wave solutions for a generalized Hirota–satsuma coupled KdV equation by homotopy perturbation method, Physics letters A 356, 131-137 (2006) · Zbl 1160.35517 · doi:10.1016/j.physleta.2006.03.039
[14]Cveticanin, L.: Homotopy perturbation method for pure nonlinear differential equation, Chaos, solitons and fractals 30, 1221-1230 (2006) · Zbl 1142.65418 · doi:10.1016/j.chaos.2005.08.180
[15]Cveticanin, L.: The homotopy-perturbation method applied for solving complex-valued differential equations with strong cubic nonlinearity, Journal of sound and vibration 285, No. 4–5, 1171-1179 (2005)
[16]Biazar, J.; Ghazvini, H.; Eslami, M.: He’s homotopy perturbation method for systems of integro-differential equations, Chaos, solitons and fractals 39, No. 3, 1253-1258 (2009) · Zbl 1197.65106 · doi:10.1016/j.chaos.2007.06.001
[17]He, J. H.: Application of homotopy perturbation method to nonlinear wave equations, Chaos, solitons and fractals 26, 695-700 (2005) · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[18]Ganji, D. D.; Sadighi, A.: Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations, Journal of computational and applied mathematics 34, 1003-1016 (2007)
[19]Wang, Q.: Homotopy perturbation method for fractional KdV-Burgers equation, Chaos, solitons and fractals 190, 1795-1802 (2007) · Zbl 1122.65397 · doi:10.1016/j.amc.2007.02.065
[20]Biazar, J.; Ghazvini, H.: He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind, Chaos, solitons and fractals 39, No. 2, 770-777 (2009) · Zbl 1197.65219 · doi:10.1016/j.chaos.2007.01.108
[21]Biazar, J.; Ghazvini, H.: Exact solutions for non-linear Schrödinger equations by he’s homotopy perturbation method, Physics letters A 366, 79-84 (2007) · Zbl 1203.65207 · doi:10.1016/j.physleta.2007.01.060
[22]Ganji, D. D.: The application of he’s homotopy perturbation method to nonlinear equations arising in heat transfer, Physics letters A 355, 337-341 (2006)
[23]Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K.: Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder, Physics letters A 352, 404-410 (2006) · Zbl 1187.76622 · doi:10.1016/j.physleta.2005.12.033
[24]Odibat, Z. M.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order, International journal of nonlinear sciences and numerical simulation 7, No. 1, 27-34 (2006)
[25]Bildik, N.; Konuralp, A.: The use of variational iteration method differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, International journal of nonlinear sciences and numerical simulation 7, No. 1, 65-70 (2006)
[26]Ariel, P. D.; Hayat, T.; Asghar, S.: Homotopy perturbation method and axisymmetric flow over a stretching sheet, International journal of nonlinear sciences and numerical simulation 7, No. 4, 399-406 (2006)
[27]Biazar, J.; Ghazvini, H.: Numerical solution for special non-linear Fredholm integral equation by HPM, Applied mathematics and computation 195, 681-687 (2008) · Zbl 1132.65115 · doi:10.1016/j.amc.2007.05.015
[28]He, J. H.: Homotopy perturbation method for bifurcation of nonlinear problems, International journal of nonlinear sciences and numerical simulation 6, No. 2, 207-208 (2005)
[29]Cai, X. C.; Wu, W. Y.; Li, M. S.: Approximate period solution for a kind of nonlinear oscillator by he’s perturbation method, International journal of nonlinear sciences and numerical simulation 7, No. 1, 109-112 (2006)
[30]Biazar, J.; Ghazvini, H.: Homotopy perturbation method for solving hyperbolic partial differential equations, Computers and mathematics with applications 54, No. 7–8, 1047-1054 (2007)