zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extending soft sets with description logics. (English) Zbl 1189.68140
Summary: Molodtsov initiated the concept of soft set theory, which can be used as a generic mathematical tool for dealing with uncertainty. Description Logics (DLs) are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way. The current research progress and the existing problems of soft set theory are analyzed. In this paper we extend soft sets with DLs, i.e., present an extended soft set theory by using the concepts of DLs to act as the parameters of soft sets. We define some operations for the extended soft sets. Moreover, we prove that certain De Morgan’s laws hold in the extended soft set theory with respect to these operations.
MSC:
68T37Reasoning under uncertainty
03E72Fuzzy set theory
68T30Knowledge representation
Software:
Pellet
References:
[1]Aktas, H.; Cagman, N.: Soft sets and soft groups, Information sciences 177, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[2]Varadhan, S. R. S.: Probability theory, (2001)
[3]Zadeh, L. A.: Is there a need for fuzzy logic, Information sciences 178, 2751-2779 (2008) · Zbl 1148.68047 · doi:10.1016/j.ins.2008.02.012
[4]Atanassov, K.: Intuitionistic fuzzy sets, Fuzzy sets and systems 20, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[5]Atanassov, K.: Intuitionistic fuzzy sets, (1999)
[6]Gau, W. L.; Buehrer, D. J.: Vague sets, IEEE transactions on systems, man and cybernetics 23, 610-614 (1993)
[7]Herbert, J. P.; Yao, J. T.: Criteria for choosing a rough set model, Computers mathematics with applications 57, 908-918 (2009) · Zbl 1186.91066 · doi:10.1016/j.camwa.2008.10.043
[8]Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[9]Tsang, E. C. C.; Chen, D.; Yeung, D. S.: Approximations and reducts with covering generalized rough sets, Computers mathematics with applications 56, 279-289 (2008) · Zbl 1145.68547 · doi:10.1016/j.camwa.2006.12.104
[10]Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Computers mathematics with applications 45, 555-562 (2003)
[11]Molodtsov, D.: Soft set theory–first results, Computers mathematics with applications 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[12]Feng, F.; Jun, Y. B.; Zhao, X.: Soft semirings, Computers mathematics with applications 56, 2621-2628 (2008)
[13]Jun, Y. B.: Soft BCK/BCI-algebras, Computers mathematics with applications 56, 1408-1413 (2008)
[14]Jun, Y. B.; Lee, K. J.; Park, C. H.: Soft set theory applied to ideals in d-algebras, Computers mathematics with applications 57, 367-378 (2009) · Zbl 1165.03339 · doi:10.1016/j.camwa.2008.11.002
[15]Kong, Z.; Gao, L.; Wang, L.; Li, S.: The normal parameter reduction of soft sets and its algorithm, Computers mathematics with applications 56, 3029-3037 (2008) · Zbl 1165.90699 · doi:10.1016/j.camwa.2008.07.013
[16]Maji, P. K.; Roy, A. R.; Biswas, R.: An application of soft sets in a decision making problem, Computers mathematics with applications 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[17]Roy, A. R.; Maji, P. K.: A fuzzy soft set theoretic approach to decision making problems, Journal of computational and applied mathematics 203, 412-418 (2007) · Zbl 1128.90536 · doi:10.1016/j.cam.2006.04.008
[18]Xiao, Z.; Gong, K.; Zou, Y.: A combined forecasting approach based on fuzzy soft sets, Journal of computational and applied mathematics 228, 326-333 (2009) · Zbl 1161.91472 · doi:10.1016/j.cam.2008.09.033
[19]Baader, F.; Calvanese, D.; Mcguinness, D.; Nardi, D.; Patel-Schneider, P.: The description logic handbook: theory, implementation and applications, (2007)
[20]Ali, M. I.; Feng, F.; Liu, X.; Min, W. K.; Shabir, M.: On some new operations in soft set theory, Computers mathematics with applications 57, 1547-1553 (2009)
[21]Schlobach, S.; Klein, M.; Peelen, L.: Description logics with approximate definitions: precise modeling of vague concepts, Proceedings of the 20th international joint conference on artificial intelligence, 557-562 (2007)
[22]Schmidt-Schauß, M.; Smolka, G.: Attributive concept descriptions with complements, Artificial intelligence 48, 1-26 (1991) · Zbl 0712.68095 · doi:10.1016/0004-3702(91)90078-X
[23]Horrocks, I.; Sattler, U.: A tableau decision procedure for SHOIQ, Journal of automated reasoning 39, 249-276 (2007) · Zbl 1132.68734 · doi:10.1007/s10817-007-9079-9
[24]Bobillo, F.; Delgado, M.; Gomez-Romero, J.; Straccia, U.: Fuzzy description logics under Gödel semantics, International journal of approximate reasoning 50, 494-514 (2009) · Zbl 1191.68647 · doi:10.1016/j.ijar.2008.10.003
[25]Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; Katz, Y.: Pellet: A practical OWL-DL reasoner, Journal of web semantics 5, 51-53 (2007)
[26]Jun, Y. B.; Park, C. H.: Applications of soft sets in ideal theory of BCK/BCI-algebras, Information sciences 178, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[27]Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parameterization reduction of soft sets and its applications, Computers mathematics with applications 49, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[28]Maji, P. K.; Biswas, R.; Roy, A. R.: Fuzzy soft sets, Journal of fuzzy mathematics 9, 589-602 (2001) · Zbl 0995.03040
[29]Zou, Y.; Xiao, Z.: Data analysis approaches of soft sets under incomplete information, Knowledge-based systems 21, 941-945 (2008)
[30]Y. Jiang, Y. Tang, J. Wang, P. Deng, S. Tang, Expressive fuzzy description logics over lattices, Knowledge-Based Systems, in press (doi:10.1016/j.knosys.2009.11.002)
[31]Jiang, Y.; Tang, Y.; Wang, J.; Tang, S.: Reasoning within intuitionistic fuzzy rough description logics, Information sciences 179, 2362-2378 (2009) · Zbl 1192.68672 · doi:10.1016/j.ins.2009.03.001
[32]Jiang, Y.; Wang, J.; Deng, P.; Tang, S.: Reasoning within expressive fuzzy rough description logics, Fuzzy sets and systems 160, 3403-3424 (2009) · Zbl 1192.68662 · doi:10.1016/j.fss.2009.01.004
[33]Jiang, Y.; Wang, J.; Tang, S.; Xiao, B.: Reasoning with rough description logics: an approximate concepts approach, Information sciences 179, 600-612 (2009) · Zbl 1170.68037 · doi:10.1016/j.ins.2008.10.021