zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of particle swarm optimization algorithm for solving bi-level linear programming problem. (English) Zbl 1189.90212
Summary: Bi-level linear programming is a technique for modeling decentralized decision. It consists of the upper-level and lower-level objectives. This paper attempts to develop an efficient method based on particle swarm optimization (PSO) algorithm with swarm intelligence. The performance of the proposed method is ascertained by comparing the results with genetic algorithm (GA) using four problems in the literature and an example of supply chain model. The results illustrate that the PSO algorithm outperforms GA in accuracy.
MSC:
90C59Approximation methods and heuristics
65K05Mathematical programming (numerical methods)
90C05Linear programming
References:
[1]Hejazi, S. R.; Memarian, A. I.; Jahanshahloo, G.; Sepehri, M. M.: Linear bi-level programming solution by genetic algorithm, Computers and operations research 29, 1913-1925 (2002)
[2]Colson, B.; Marcotte, P.; Savard, G.: Bi-level programming: A survey, A quarterly journal of operation research 3, 87-107 (2005) · Zbl 1134.90482 · doi:10.1007/s10288-005-0071-0
[3]Luce, R.; Raiffa, H.: Game and decisions, (1957)
[4]Dantzing, G. B.; Wolfe, P.: Decomposition principle for linear programs, Operations research 8, No. 1, 101-111 (1960) · Zbl 0093.32806 · doi:10.1287/opre.8.1.101
[5]Bialas, W. F.; Karwan, M. H.: On two-level optimization, IEEE transaction on automatic control 27, 211-214 (1982) · Zbl 0487.90005 · doi:10.1109/TAC.1982.1102880
[6]Bialas, W. F.; Karwan, M. H.: Two-level linear programming, Management science 30, No. 8, 1004-1020 (1984) · Zbl 0559.90053 · doi:10.1287/mnsc.30.8.1004
[7]Bard, J. F.: Practical bilevel optimization: algorithms and applications, (1998)
[8]W.F. Bialas, M.H. Karwan, Multilevel linear programming, Research Report No. 78-1, Operations Research Program, Department of Industrial Engineering, State University of New York at Buffalo, 1978
[9]Wen, U. P.; Hsu, S. T.: Linear bi-level programming problems–A review, Journal of operations research society 42, No. 2, 125-133 (1991)
[10]H.S. Shih, Fuzzy multi-level optimization, Ph.D. Dissertation, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, USA, 1995
[11]Sakawa, M.; Nishizaki, I.: Interactive fuzzy programming for two-level nonconvex programming problems with fuzzy parameters through genetic algorithms, Fuzzy sets and systems 127, 185-197 (2002) · Zbl 0994.90146 · doi:10.1016/S0165-0114(01)00134-8
[12]Mathieu, R.; Pittard, L.; Anandalingam, G.: Genetic algorithm based approach to bi-level linear programming, Operations research 28, No. 1, 1-21 (1994) · Zbl 0857.90083
[13]Gendreau, M.; Marcotte, P.; Savard, G.: A hybrid tabu-ascent algorithm for the linear bilevel programming problem, Journal of global optimization 8, No. 3, 217-233 (1996) · Zbl 0859.90097 · doi:10.1007/BF00121266
[14]V. Oduguwa, R. Roy, Bi-level optimization using genetic algorithm, IEEE International Conference on Artificial Intelligence Systems, 2002, pp. 322–327
[15]Yin, Y.: Genetic-algorithms-based approach for bilevel programming models, Journal of transportation engineering, 115-120 (2000)
[16]Wang, Y.; Jiao, Y.; Li, H.: An evolutionary algorithm for solving nonlinear bi-level programming problem based on a new constraint-handling scheme, IEEE transactions on systems, man and cybernetics, part (c) 35, No. 2, 221-232 (2005)
[17]G.M. Wang, X.J. Wang, Z.P. Wan, Y.L. Chen, Genetic algorithms for solving linear bilevel programming, Proceedings of the IEEE Sixth International Conference on Parallel and Distributed Computing, 2005
[18]Sahin, H. K.; Ciric, R. A.: A dual temperature simulated annealing approach for solving bilevel programming problem, Computers and chemical engineering 23, 11-25 (1998)
[19]Wen, U. P.; Huang, A. D.: A simple tabu search method to solve the mixed-integer problem bi-level programming problem, European journal of operational research 88, 563-571 (1996) · Zbl 0908.90194 · doi:10.1016/0377-2217(94)00215-0
[20]Wen, U. P.; Huang, A. D.: A tabu search approach for solving the linear bilevel programming problem, Journal of the chinese institute of industrial engineers 13, 113-119 (1996)
[21]Gupta, R. J. K.; Kusumakar, H. S.; Jayaraman, V. K.; Kulkarni, B. D.: A tabu search based approach for solving a class of bilevel programming problems in chemical engineering, Journal of heuristics 9, 307-319 (2003)
[22]Shih, H. S.; Wen, U. P.; Lee, E. S.; Lan, K. M.; Hsiao, H. C.: A neural network approach to multi-objective and multilevel programming problems, Computers and mathematics with applications 48, 95-108 (2004) · Zbl 1062.90060 · doi:10.1016/j.camwa.2003.12.003
[23]Lan, K. M.; Wen, U. P.; Shih, H. S.; Lee, E. S.: A hybrid neural network approach to bilevel programming problems, Applied mathematics letters 20, 880-884 (2007) · Zbl 1162.90514 · doi:10.1016/j.aml.2006.07.013
[24]R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya Japan, 1995, pp. 39–43
[25]F. Wang, Y. Qiu, A modified particle swarm optimizer with roulette selection operator, Proceedings of Natural Language Processing and Knowledge Engineering, 2005, pp. 765–768
[26]Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, Proceedings of the IEEE International Conference on Evolutionary Computation, Piscataway, 1998, pp. 69–73
[27]Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, evolutionary programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming, 1998, pp. 591–600
[28]M. Clerc, The swarm and the queen: Toward a deterministic and adaptive particle swarm optimization, Proceedings of ICEC’99, 1999, pp. 1951–1957
[29]Wen, U. P.; Hsu, S.: Algorithms for solving integer two-level linear programming problem, Computers and operational research 17, No. 2, 133-142 (1991) · Zbl 0683.90055 · doi:10.1016/0305-0548(90)90037-8
[30]Liu, Y. H.; Hart, S. M.: Characterizing an optimal solution to the linear bilevel programming problem, European journal of operational research 79, 164-166 (1994) · Zbl 0806.90084 · doi:10.1016/0377-2217(94)90155-4
[31]Bard, J. F.; Falk, J. E.: An explicit solution to the multi-level programming problem, Computers and operations research 9, No. 1, 77-100 (1982)