zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A geometric approach for reachability and observability of linear switched impulsive systems. (English) Zbl 1189.93021
Summary: This paper is concerned with the reachability and observability of linear switched impulsive systems with singular impulse matrices. First some new concepts with respect to the reachability and unobservability are introduced. Especially, span reachability is proposed because the reachable sets of switched impulsive systems do not always constitute subspaces. Then the geometric characterization of the span reachable and unobservable sets is presented. Moreover, the relations between the span reachable set, unobservable set and the invariant subspaces of such systems are discussed. Finally, corresponding criteria applied to linear impulsive systems and linear switched systems are also discussed.
93B03Attainable sets
93C05Linear control systems
93B27Geometric methods in systems theory
34H05ODE in connection with control problems