zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Control of a heat diffusion system through a fractional order nonlinear algorithm. (English) Zbl 1189.93047
Summary: The application of the FC concepts has increased significantly in different fields of science and engineering, because FC captures properties that classical integer order models neglect. This paper studies a heat diffusion system, that is described through the fractional operator s 0·5 , under the control of a fractional nonlinear algorithm. The tuning of the algorithm follows the optimization of performance control indices. The results demonstrate the good performance of the proposed controller.
MSC:
93B50Synthesis problems
26A33Fractional derivatives and integrals (real functions)
References:
[1]Oldham, Keith B.; Jerome, Spanier: The fractional calculus: theory and application of differentiation and integration to arbitrary order, (1974)
[2]Samko, Stefan G.; Kilbas, Anatoly A.; Marichev, Oleg I.: Integrals and derivatives of the fractional order and some of their applications, (1987) · Zbl 0617.26004
[3]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[4]Podlubny, I.: Fractional differential equations, (1999)
[5]Sabatier, J.; Aoun, M.; Oustaloup, A.; Gregoire, G.; Ragot, F.; Roy, P.: Fractional system identification for lead acid battery sate charge estimation, Signal processing journal 86, No. 10, 2645-2657 (2006) · Zbl 1172.93399 · doi:10.1016/j.sigpro.2006.02.030
[6]Machado, J. T.; Jesus, Isabel; Cunha, J. B.; Tar, J. K.: Fractional dynamics and control of distributed parameter systems, Intelligent systems at the service of mankind 2, 295-305 (2006)
[7]Machado, J. T.; Jesus, Isabel: A suggestion from the past?, FCAA – journal of fractional calculus and applied analysis 7, No. 4, 403-407 (2004) · Zbl 1121.26004
[8]Jesus, Isabel S.; Machado, J. A. Tenreiro: Fractional control of heat diffusion systems, Journal nonlinear dynamics (2008)
[9]Jesus, Isabel S.; Machado, J. A. Tenreiro: Application of fractional calculus in the control of heat systems, Journal of advanced computational intelligence 11, No. 9 (2007)
[10]Courant, R.; Hilbert, D.: Methods of mathematical physics, partial differential equations, (1962) · Zbl 0099.29504
[11]Crank, J.: The mathematics of diffusion, (1956) · Zbl 0071.41401
[12]Curtis, F. Gerald; Wheatley, Patrick O.: Applied numerical analysis, (1999)
[13]I. Petras, B. Vinagre, V. Dorcak, V. Feliu, Fractional digital control of a heat solid: Experimental results, in: International Carpathian Control Conference - ICCC, 2002, Malenovice, Czech Republic, May 2002
[14]Barbosa, Ramiro S.; Machado, J. A. T.; Ferreira, Isabel M.: Tuning of PID controllers based on bode’s ideal transfer function, Nonlinear dynamics 38, No. 1/4, 305-321 (2004) · Zbl 1134.93334 · doi:10.1007/s11071-004-3763-7
[15]Concepción A. Monje, Blas M. Vinagre, Vicente Feliu, YangQuan Chen, On autotuning of fractional order PIλD controllers, in: The Second IFAC Symposium on Fractional Derivatives and Applications - IFAC FDA06, 19–21 July, Porto, Portugal, 2006
[16]Vinagre, B. M.; Podlubny, I.; Hernandez, A.; Feliu, V.: Some approximations of fractional order operators used in control theory and applications, FCAA – journal of fractional calculus and applied analysis 3, No. 3 (2000) · Zbl 1111.93302
[17]Lorentzen, Lisa; Haakon, Waadeland: Continued fractions with applications, (1992)
[18]Isabel S. Jesus, J.A. Tenreiro Machado, Ramiro S. Barbosa, Fractional order nonlinear control of heat systems, in: Fractional Differentiation and its Applications, FDA’08, Ankara, Turkey, 2008
[19]I.S. Jesus, R.S. Barbosa, J.A.T. Machado, J.B. Cunha, Strategies for the control of heat diffusion systems based on fractional calculus, in: IEEE Int. Conf. on Computational Cybernetics, Estonia, 2006
[20]I.S. Jesus, J.A.T. Machado, J.B. Cunha, Fractional dynamics and control of heat diffusion systems, in: The 26th IASTED International Conference on Modelling, Identification and Control - MIC 2007, Innsbruck, Austria, 2007
[21]Utkin, Vadim I.: Variable structure systems with sliding modes, IEEE transactions on automatic control 22, No. 2, 212-222 (1977) · Zbl 0382.93036 · doi:10.1109/TAC.1977.1101446
[22]Machado, J. T.: Variable structure control of manipulators with joints having flexibility and backlash, Journal system analysis modelling simulation 23, 93-101 (1996) · Zbl 0878.70020
[23]Damiano, Alfonso; Gatto, Gianluca L.; Ignazio, Marongiu: Second-order sliding-mode control of DC drives, IEEE transactions on industrial electronics 51, No. 2, 364-373 (2004)
[24]Yang, Z. Y.; Huang, T.; Xu, X.; Cooper, J. E.: Variable structure control of high-speed parallel manipulator considering the mechatronics coupling model, International journal of advanced manufacture technology 34, 1037-1051 (2007)
[25]Wu, Tai-Zu; Wang, Jinn-Der; Juang, Yau-Tarng: Decoupled integral variable structure control for MIMO systems, Journal of the franklin institute 344, 1006-1020 (2007) · Zbl 1128.93013 · doi:10.1016/j.jfranklin.2007.04.001
[26]Wu, Jianhua; Han, Ding: Iterative learning variable structure controller for higt-speed and high-precision point-to-point motion, Journal of robotics and computer-integrated manufacturing 24, 384-391 (2008)