zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy impulsive control and synchronization of general chaotic system. (English) Zbl 1189.93077
Summary: By utilizing impulsive control theory and T-S fuzzy model, the fuzzy impulsive control and synchronization of general chaotic system are proposed. Some less conservative and more general conditions are obtained to guarantee the globally asymptotical stability for the impulsive control and synchronization of general chaotic system based on T-S fuzzy model. Moreover, some criteria of globally exponential stability of chaotic system are also derived. Finally, some numerical simulations are given to demonstrate the effectiveness of the proposed control method.
MSC:
93C42Fuzzy control systems
34H10Chaos control (ODE)
93C15Control systems governed by ODE
93D20Asymptotic stability of control systems
93C10Nonlinear control systems
References:
[1]Chen, D.L., Sun, J.T., Wu, Q.D.: Impulsive control and its application to Lü chaotic system. Chaos, Solitons Fractals 21, 1135–1142 (2004) · Zbl 1060.93517 · doi:10.1016/j.chaos.2003.12.056
[2]Chen, M.Y., Zhou, D.H., Shang, Y.: A simple time-delayed method to control chaotic systems. Chaos, Solitons Fractals 22, 1117–1125 (2004) · Zbl 1060.93518 · doi:10.1016/j.chaos.2004.03.021
[3]Guan, X.P., Fan, Z.P., Peng, H.M., Wang, Y.Q.: Adaptive control of Chen’s chaotic system. J. Phys. 3, 324–416 (2001)
[4]Jiang, G.R., Lu, Q.S., Qian, L.N.: Chaos and its control in an impulsive differential system. Chaos, Solitons Fractals 34, 1135–1147 (2007) · Zbl 1142.93424 · doi:10.1016/j.chaos.2006.04.024
[5]Li, Z.: Fuzzy Chaotic Systems Modeling, Control and Applications. Springer, Berlin (2006)
[6]Lian, K.W., Chiang, C.S., Liu, P.: LMI-based chaotic synchronizationand communications. IEEE Trans. Fuzzy Syst. 9, 539–553 (2001) · doi:10.1109/91.940967
[7]Liu, X.Z., Liu, Y.Q.: Kok Lay Teo: Stability analysis of impulsive control systems. Math. Comput. Model. 37, 1357–1370 (2003) · Zbl 1053.34063 · doi:10.1016/S0895-7177(03)90046-X
[8]Liu, X.W., Zhong, S.M.: T-S fuzzy model-based impulsive control of chaotic systems with exponential decay rate. Phys. Lett. A 370, 260–264 (2007) · Zbl 1209.93085 · doi:10.1016/j.physleta.2007.05.059
[9]Ma, J.H., Ren, B., Chen, Y.S.: Impulsive control chaotic attractors in nonlinear chaotic systems. Appl. Math. Mech. 25, 971–976 (2004) · Zbl 1115.37367 · doi:10.1007/BF02438345
[10]Ott, E., Grebogi, C., Yorke, A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[11]Sun, J.T., Zhang, Y.P.: Impulsive control and synchronization of Chua’s oscillators. Math. Comput. Simul. 66, 499–508 (2004) · Zbl 1113.93088 · doi:10.1016/j.matcom.2004.03.004
[12]Sun, J.T., Zhang, Y.P., Wu, Q.D.: Less conservative conditions for asymptotic stability of impulsive control system. IEEE Trans. Automat. Contr. 48, 829–831 (2003) · doi:10.1109/TAC.2003.811262
[13]Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45, 135–156 (1992) · Zbl 0758.93042 · doi:10.1016/0165-0114(92)90113-I
[14]Tao, Y.: Impulsive control. IEEE Trans. Automat. Contr. 44, 1081–1083 (1999) · Zbl 1056.93555 · doi:10.1109/9.739126
[15]Wang, Y.W., Guan, Z.H., Wang, H.O.: Impulsive synchronization for Takagi-Sugeno fuzzy model and its application to continuous chaotic system. Phys. Lett. A 339, 325–332 (2005) · Zbl 1145.93373 · doi:10.1016/j.physleta.2005.03.039
[16]Xie, W.X., Wen, C.Y., Li, Z.G.: Impulsive control for the stabilization and synchronization of Lorenz systems. Phys. Lett. A 275, 67–72 (2000) · Zbl 1115.93347 · doi:10.1016/S0375-9601(00)00584-3
[17]Zheng, Y., Chen, G.R.: Fuzzy impulsive control of chaotic systems based on TS fuzzy model. Chaos, Solitons Fractals (2007). doi: 10.1016/j.chaos.2007.06.061
[18]Zhong, Q., Bao, J., Yu, Y., Liao, X.: Impulsive control for T-S fuzzy model-based chaotic systems. Math. Comput. Simul. (2008). doi: 10.1016/j.matcom.2008.01.027