zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems. (English) Zbl 1189.93085
Summary: The problem of reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems is investigated in this paper. Firstly a reliable impulsive controller is designed by the impulsive control theory. Then, some sufficient conditions for reliable impulsive lag synchronization between the drive system and the response system are obtained. Numerical simulations are given to show the effectiveness of the proposed method.
MSC:
93C55Discrete-time control systems
References:
[1]Pecoral, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[2]Chen, G.R., Yu, X.H.: On time-delay feedback control of chaotic systems. IEEE Trans. Circuit Syst. I 64, 767–772 (1999) · Zbl 0951.93034 · doi:10.1109/81.768837
[3]Bainov, D.D., Simeonov, P.S.: Systems with Impulse Effect: Stability, Theory and Applications. Halsted Press, New York (1989)
[4]Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
[5]Yang, T.: Impulsive Control Theory. Springer, Berlin (2001)
[6]Jiang, H.B., Yu, J.J., Zhou, C.G.: Robust fuzzy control of nonlinear fuzzy impulsive systems with time-varying delay. IET Control Theory Appl. 2, 654–661 (2008) · doi:10.1049/iet-cta:20070375
[7]Yang, T., Yang, L.B., Yang, C.M.: Impulsive synchronization of Lorenz systems. Phys. Lett. A 226, 349–354 (1997) · doi:10.1016/S0375-9601(97)00004-2
[8]Sun, J.T., Zhang, Y.P., Wu, Q.D.: Impulsive control for the stabilization and synchronization of Lorenz systems. Phys. Lett. A 298, 153–160 (2002) · Zbl 0995.37021 · doi:10.1016/S0375-9601(02)00466-8
[9]Zhang, X.H., Liao, X.F., Li, C.D.: Impulsive control, complete and lag synchronization of unified chaotic system with continuous periodic switch. Chaos Solitons Fractals 26, 845–854 (2005) · Zbl 1093.93025 · doi:10.1016/j.chaos.2005.01.027
[10]Jiang, H.B.: Hybrid adaptive and impulsive synchronization of uncertain complex dynamical networks by the generalized Barbalat’s lemma. IET Control Theory Appl. (2009). doi: 10.1049/iet-cta.2008.0335
[11]Liu, B., Liu, X.Z.: Robust stability of uncertain discrete impulsive systems. IEEE Trans. Circuit Syst. II 54, 455–459 (2007) · doi:10.1109/TCSII.2007.892395
[12]Zhang, H., Guan, Z.H., Feng, G.: Reliable dissipative control for stochastic impulsive systems. Automatica 44, 1004–1010 (2008)
[13]MacFarlane, A.G.J.: Complex Variable Methods for Linear Multivariable Feedback Systems. Taylor & Francis, London (1980)
[14]Veillette, R.J., Medanic, J.V., Perkins, W.R.: Design of reliable control systems. IEEE Trans. Autom. Control 37, 290–304 (1992) · Zbl 0745.93025 · doi:10.1109/9.119629
[15]Chen, B., Liu, X.P.: Reliable control design of fuzzy dynamic systems with time-varying delay. Fuzzy Sets Syst. 146, 349–374 (2004) · Zbl 1055.93050 · doi:10.1016/S0165-0114(03)00326-9
[16]Kuo, H.H., Hou, Y.Y., Yan, J.J., Liao, T.L.: Reliable synchronization of nonlinear chaotic systems. Math. Comput. Simul. 79, 1627–1635 (2009) · Zbl 1167.93016 · doi:10.1016/j.matcom.2008.07.009
[17]Zhang, Y., Sun, J.: Impulsive robust fault-tolerant feedback control for chaotic Lur’e systems. Chaos Solitons Fractals 39, 1440–1446 (2009) · Zbl 1197.93149 · doi:10.1016/j.chaos.2007.06.012
[18]Li, C.D., Liao, X.F., Zhang, R.: A unified approach for impulsive lag synchronization of chaotic systems with time delay. Chaos Solitons Fractals 23, 1177–1184 (2005)
[19]Wang, D.X., Zhong, Y.L., Chen, S.H.: Lag synchronizing chaotic system based on a single controller. Commun. Nonlinear Sci. Numer. Simul. 13, 637–644 (2008) · Zbl 1130.34322 · doi:10.1016/j.cnsns.2006.05.005
[20]Lu, J.F.: Generalized (complete, lag, anticipated) synchronization of discrete-time chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 13, 1851–1859 (2008) · Zbl 1221.37216 · doi:10.1016/j.cnsns.2007.04.022
[21]Zheng, Y.A., Nian, Y.B., Liu, Z.R.: Impulsive control for the stabilization of discrete chaotic system. Chin. Phys. Lett. 19, 1251–1253 (2002) · doi:10.1088/0256-307X/19/9/310
[22]Zheng, Y.A., Nian, Y.B., Liu, Z.R.: Impulsive synchronization of discrete chaotic systems. Chin. Phys. Lett. 20, 199–201 (2003) · doi:10.1088/0256-307X/20/2/308