zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Well-posed inhomogeneous nonlinear diffusion scheme for digital image denoising. (English) Zbl 1189.94024
Summary: We study an inhomogeneous partial differential equation which includes a separate edge detection part to control smoothing in and around possible discontinuities, under the framework of anisotropic diffusion. By incorporating edges found at multiple scales via an adaptive edge detector-based indicator function, the proposed scheme removes noise while respecting salient boundaries. We create a smooth transition region around probable edges found and reduce the diffusion rate near it by a gradient-based diffusion coefficient. In contrast to the previous anisotropic diffusion schemes, we prove the well-posedness of our scheme in the space of bounded variation. The proposed scheme is general in the sense that it can be used with any of the existing diffusion equations. Numerical simulations on noisy images show the advantages of our scheme when compared to other related schemes.
94A08Image processing (compression, reconstruction, etc.)
94A13Detection theory
68U10Image processing (computing aspects)