zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nabla discrete fractional calculus and nabla inequalities. (English) Zbl 1190.26001
Summary: Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remainders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities.
MSC:
26A33Fractional derivatives and integrals (real functions)
References:
[1]Atici, F.; Eloe, P.: Discrete fractional calculus with the nabla operator, Electron. J. Qual. theory differ. Equ. spec. Ed. I, No. 1, 1-99 (2009)
[2]Anderson, D. R.: Taylor polynomials for nabla dynamic equations on time scales, Panamer. math. J. 12, No. 4, 17-27 (2002) · Zbl 1026.34011
[3]Atici, F.; Eloe, P.: Initial value problems in discrete fractional calculus, Proc. AMS 137, No. 3, 981-989 (2009) · Zbl 1166.39005 · doi:10.1090/S0002-9939-08-09626-3
[4]G. Anastassiou, Discrete fractional Calculus and inequalities, 2009 (submitted for publication)