zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system. (English) Zbl 1190.35039
Summary: This paper is concerned with global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system. A new global existence result and several new blow-up results of strong solutions to the system are presented. Our obtained results for the system are sharp and improve considerably earlier results.
MSC:
35B44Blow-up (PDE)
35G25Initial value problems for nonlinear higher-order PDE
35Q35PDEs in connection with fluid mechanics
References:
[1]Beals, R.; Sattinger, D.; Szmigielski, J.: Multipeakons and a theorem of Stieltjes, Inverse problems 15, 1-4 (1999) · Zbl 0923.35154 · doi:10.1088/0266-5611/15/1/001
[2]Bressan, A.; Constantin, A.: Global conservative solutions of the Camassa – Holm equation, Arch. ration. Mech. anal. 183, 215-239 (2007) · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[3]Bressan, A.; Constantin, A.: Global dissipative solutions of the Camassa – Holm equation, Anal. appl. 5, 1-27 (2007) · Zbl 1139.35378 · doi:10.1142/S0219530507000857
[4]Camassa, R.; Holm, D.: An integrable shallow water equation with peaked solitons, Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[5]Camassa, R.; Holm, D.; Hyman, J.: A new integrable shallow water equation, Adv. in appl. Mech. 31, 1-33 (1994) · Zbl 0808.76011
[6]Chen, M.; Liu, S. -Q.; Zhang, Y.: A 2-component generalization of the Camassa – Holm equation and its solutions, Lett. math. Phys. 75, 1-15 (2006) · Zbl 1105.35102 · doi:10.1007/s11005-005-0041-7
[7]Constantin, A.: The Hamiltonian structure of the Camassa – Holm equation, Expo. math. 15, 53-85 (1997)
[8]Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. inst. Fourier (Grenoble) 50, 321-362 (2000) · Zbl 0944.35062 · doi:10.5802/aif.1757 · doi:numdam:AIF_2000__50_2_321_0
[9]Constantin, A.: On the scattering problem for the Camassa – Holm equation, Proc. R. Soc. lond. Ser. A math. Phys. eng. Sci. 457, 953-970 (2001) · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[10]Constantin, A.: The trajectories of particles in Stokes waves, Invent. math. 166, 523-535 (2006) · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[11]Constantin, A.; Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations, Acta math. 181, 229-243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[12]Constantin, A.; Escher, J.: Global existence and blow-up for a shallow water equation, Ann. sc. Norm. super. Pisa cl. Sci. (4) 26, 303-328 (1998) · Zbl 0918.35005 · doi:numdam:ASNSP_1998_4_26_2_303_0
[13]Constantin, A.; Escher, J.: Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. pure appl. Math. 51, 475-504 (1998) · Zbl 0934.35153 · doi:10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
[14]Constantin, A.; Escher, J.: Global weak solutions for a shallow water equation, Indiana univ. Math. J. 47, 1527-1545 (1998) · Zbl 0930.35133 · doi:10.1512/iumj.1998.47.1466
[15]Constantin, A.; Escher, J.: On the blow-up rate and the blow-up of breaking waves for a shallow water equation, Math. Z. 233, 75-91 (2000) · Zbl 0954.35136 · doi:10.1007/PL00004793
[16]Constantin, A.; Escher, J.: Particle trajectories in solitary water waves, Bull. amer. Math. soc. 44, 423-431 (2007) · Zbl 1126.76012 · doi:10.1090/S0273-0979-07-01159-7
[17]Constantin, A.; Ivanov, R.: On an integrable two-component Camassa – Holm shallow water system, Phys. lett. A 372, 7129-7132 (2008) · Zbl 1227.76016 · doi:10.1016/j.physleta.2008.10.050
[18]Constantin, A.; Johnson, R. S.: Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid dynam. Res. 40, 175-211 (2008) · Zbl 1135.76007 · doi:10.1016/j.fluiddyn.2007.06.004
[19]Constantin, A.; Kolev, B.: Geodesic flow on the diffeomorphism group of the circle, Comment. math. Helv. 78, 787-804 (2003) · Zbl 1037.37032 · doi:10.1007/s00014-003-0785-6
[20]Constantin, A.; Lannes, D.: The hydrodynamical relevance of the Camassa – Holm and Degasperis – Procesi equations, Arch. ration. Mech. anal. 192, 165-186 (2009) · Zbl 1169.76010 · doi:10.1007/s00205-008-0128-2
[21]Constantin, A.; Molinet, L.: Global weak solutions for a shallow water equation, Comm. math. Phys. 211, 45-61 (2000) · Zbl 1002.35101 · doi:10.1007/s002200050801
[22]Constantin, A.; Strauss, W. A.: Stability of peakons, Comm. pure appl. Math. 53, 603-610 (2000) · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[23]Constantin, A.; Strauss, W. A.: Stability of a class of solitary waves in compressible elastic rods, Phys. lett. A 270, 140-148 (2000) · Zbl 1115.74339 · doi:10.1016/S0375-9601(00)00255-3
[24]Dai, H. H.: Model equations for nonlinear dispersive waves in a compressible mooney – rivlin rod, Acta mech. 127, 193-207 (1998) · Zbl 0910.73036 · doi:10.1007/BF01170373
[25]Danchin, R.: A few remarks on the Camassa – Holm equation, Differential integral equations 14, 953-988 (2001) · Zbl 1161.35329
[26]Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: An integrable shallow water equation with linear and nonlinear dispersion, Phys. rev. Lett. 87, 4501-4504 (2001)
[27]Escher, J.; Lechtenfeld, O.; Yin, Z.: Well-posedness and blow-up phenomena for the 2-component Camassa – Holm equation, Discrete contin. Dyn. syst. Ser. A 19, 493-513 (2007) · Zbl 1149.35307
[28]Escher, J.; Yin, Z.: Initial boundary value problems of the Camassa – Holm equation, Comm. partial differential equations 33, 377-395 (2008) · Zbl 1145.35031 · doi:10.1080/03605300701318872
[29]Escher, J.; Yin, Z.: Initial boundary value problems for nonlinear dispersive wave equations, J. funct. Anal. 256, 479-508 (2009) · Zbl 1193.35108 · doi:10.1016/j.jfa.2008.07.010
[30]Falqui, G.: On a Camassa – Holm type equation with two dependent variables, J. phys. A 39, 327-342 (2006) · Zbl 1084.37053 · doi:10.1088/0305-4470/39/2/004
[31]Fokas, A.; Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D 4, 47-66 (1981) · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[32]Ionescu-Krus, D.: Variational derivation of the Camassa – Holm shallow water equation, J. nonlinear math. Phys. 14, 303-312 (2007) · Zbl 1157.76005 · doi:10.2991/jnmp.2007.14.3.1
[33]Ivanov, R. I.: Extended Camassa – Holm hierarchy and conserved quantities, Z. naturforsch. A 61, 133-138 (2006) · Zbl 1186.37079
[34]Ivanov, R. I.: Water waves and integrability, Philos. trans. R. soc. Lond. ser. A math. Phys. eng. Sci. 365, 2267-2280 (2007) · Zbl 1152.76322 · doi:10.1098/rsta.2007.2007
[35]Johnson, R. S.: Camassa – Holm, Korteweg – de Vries and related models for water waves, J. fluid mech. 457, 63-82 (2002) · Zbl 1037.76006 · doi:10.1017/S0022112001007224
[36]Kolev, B.: Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations, Philos. trans. R. soc. Lond. ser. A math. Phys. eng. Sci. 365, 2333-2357 (2007) · Zbl 1152.37344 · doi:10.1098/rsta.2007.2012
[37]Lakshmanan, M.: Integrable nonlinear wave equations and possible connections to tsunami dynamics, , 31-49 (2007)
[38]Li, Y.; Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. differential equations 162, 27-63 (2000) · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[39]Popowicz, Z.: A 2-component or N=2 supersymmetric Camassa – Holm equation, Phys. lett. A 354, 110-114 (2006)
[40]Rodriguez-Blanco, G.: On the Cauchy problem for the Camassa – Holm equation, Nonlinear anal. 46, 309-327 (2001) · Zbl 0980.35150 · doi:10.1016/S0362-546X(01)00791-X
[41]Toland, J. F.: Stokes waves, Topol. methods nonlinear anal. 7, 1-48 (1996)
[42]Whitham, G. B.: Linear and nonlinear waves, (1980)
[43]Xin, Z.; Zhang, P.: On the weak solutions to a shallow water equation, Comm. pure appl. Math. 53, 1411-1433 (2000) · Zbl 1048.35092 · doi:10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
[44]Yin, Z.: Well-posedness, global existence and blowup phenomena for an integrable shallow water equation, Discrete contin. Dyn. syst. Ser. A 10, 393-411 (2004) · Zbl 1061.35123 · doi:10.3934/dcds.2004.11.393