zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algebraic characterization of the isometries of the hyperbolic 5-space. (English) Zbl 1190.37022
The author obtains an algebraic characterization of the dynamical types of the orientation preserving isometries of the hyperbolic 5-space 5 . The characterization is described by using the representation of the isometries of 5 as 2×2 matrices over the quaternions, 𝔾𝕃(2,), together with the natural embedding of 𝔾𝕃(2,) into 𝔾𝕃(4,). It is also given the determination of the conjugacy classes and the z-classes in 𝔾𝕃(2,).
37C85Dynamics of group actions other than and , and foliations
51M10Hyperbolic and elliptic geometries (general) and generalizations
15A33Matrices over special rings
[1]Ahlfors L.V.: Möbius Transformations and Clifford Numbers. Differential Geometry and Complex Analysis, pp. 65–73. Springer, New York (1985)
[2]Aslaksen H.: Quaternionic determinants. Math. Intell. 18, 57–65 (1996) · Zbl 0881.15007 · doi:10.1007/BF03024312
[3]Beardon A.F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics 91. Springer- Verlag, Berlin (1983)
[4]Brenner J.L.: Matrices of quaternions. Pacific J. Math. 1, 329–335 (1951)
[5]Cao W., Parker J.R., Wang X.: On the classification of quaternionic Möbius transformations. Math. Proc. Cambridge Philos. Soc. 137(2), 349–361 (2004) · Zbl 1059.30043 · doi:10.1017/S0305004104007868
[6]Cao, C. Waterman, P.L.: Conjugacy Invariants of Möbius Groups: Quasiconformal Mappings and Analysis pp. 109–139. Springer (1998)
[7]Cao W.: On the classification of four-dimensional Möbius transformations. Proc. Edinb. Math. Soc. 50(1): 49–62 (2007) · Zbl 1121.30022 · doi:10.1017/S0013091505000398
[8]Foreman B.: Conjugacy invariants of 𝕊L(2,) . Linear Algebra Appl. 381, 25–35 (2004) · Zbl 1048.15015 · doi:10.1016/j.laa.2003.11.002
[9]Gongopadhyay K., Kulkarni R.S.: z-Classes of isometries of the hyperbolic space. Conform. Geom. Dyn. 13, 91–109 (2009) · Zbl 1206.51017 · doi:10.1090/S1088-4173-09-00190-8
[10]Gongopadhyay, K.: z-Classes of isometries of pseudo-riemannian geometries of constant curvature. Ph.D. Thesis, IIT Bombay (2008)
[11]Gongopadhyay, K.: Dynamical types of isometries of hyperbolic space of dimension 5. arXiv:math/0511444v1
[12]Kellerhals R.: Collars in PSL(2,) . Ann. Acad. Sci. Fenn. Math. 26, 51–72 (2001)
[13]Kellerhals R.: Quaternions and some global properties of hyperbolic 5-manifolds. Canad. J. Math. 55, 1080–1099 (2003) · Zbl 1054.57019 · doi:10.4153/CJM-2003-042-4
[14]Kulkarni R.S.: Dynamical types and conjugacy classes of centralizers in groups. J. Ramanujan Math. Soc. 22(1), 35–56 (2007)
[15]Kulkarni R.S.: Dynamics of linear and affine maps. Asian J. Math. 12(3), 321–344 (2008)
[16]Lee H.C.: Eigenvalues and canonical forms of matrices with quaternion coefficients. Proc. Roy. Irish Acad. Sect. A. 52, 253–260 (1949)
[17]Parker J.R., Short I.: Conjugacy classification of quaternionic Möbius transformations. Comput. Methods Funct. Theory 9, 13–25 (2009)
[18]Ratcliffe J.G.: Foundation of Hyperbolic Manifolds. Graduate Texts in Mathematics 149. Springer, New York (1994)
[19]Waterman P.L.: Möbius groups in several dimensions. Adv. Math. 101, 87–113 (1993) · Zbl 0793.15019 · doi:10.1006/aima.1993.1043
[20]Wilker J.B.: The quaternion formalism for Möbius groups in four or fewer dimensions. Linear Algebra Appl. 190, 99–136 (1993) · Zbl 0786.51005 · doi:10.1016/0024-3795(93)90222-A