zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Time series AR modeling with missing observations based on the polynomial transformation. (English) Zbl 1190.62157
Summary: This paper focuses on parameter estimation problems of auto-regressive (AR) time series models with missing observations. The standard estimation algorithms cannot be applied to such AR models with missing observations. A polynomial transformation technique is employed to transform the AR models into models which can be identified from available scarce observations and then the extended stochastic gradient algorithm is proposed to fit the time series with missing observations. The convergence properties of the proposed algorithm are analyzed and an example is given to test and illustrate the conclusions.
62M10Time series, auto-correlation, regression, etc. (statistics)
62F10Point estimation
62F12Asymptotic properties of parametric estimators
65C60Computational problems in statistics
[1]Fortes, I.; Mora-López, L.; Morales, R.; Triguero, F.: Inductive learning models with missing values, Mathematical and computer modelling 44, No. 9–10, 790-806 (2006) · Zbl 1135.68532 · doi:10.1016/j.mcm.2006.02.013
[2]Gómez, V.; Maravall, A.; Peña, D.: Missing observations in ARIMA models: skipping approach versus additive outlier approach, Journal of econometrics 88, No. 2, 341-363 (1999) · Zbl 1054.62621 · doi:10.1016/S0304-4076(98)00036-0
[3]Enders, Craig K.: Teacher’s corner: A primer on maximum likelihood algorithms available for use with missing observations, Structural equation modeling: A multidisciplinary journal 8, No. 1, 128-141 (2001)
[4]Rubin, D. B.: Multiple imputation after 18+ years, Journal of the American statistical association 91, 473-489 (1996) · Zbl 0869.62014 · doi:10.2307/2291635
[5]Ding, F.; Chen, T.: Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica 40, No. 10, 1739-1748 (2004) · Zbl 1162.93376 · doi:10.1016/j.automatica.2004.05.001
[6]Ding, F.; Chen, T.: Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE transactions on automatic control 50, No. 9, 1436-1441 (2005)
[7]Ljung, L.: System identification: theory for the user, (1999)
[8]Han, L.; Sheng, J.; Ding, F.; Shi, Yang: Auxiliary model identification method for multirate multi-input systems based on least squares, Mathematical and computer modelling 50, No. 7–8, 1100-1106 (2009) · Zbl 1185.93139 · doi:10.1016/j.mcm.2009.06.002
[9]Ding, J.; Ding, F.: The residual based extended least squares identification method for dual-rate systems, Computers and mathematics with applications 56, No. 6, 1479-1487 (2008) · Zbl 1155.93435 · doi:10.1016/j.camwa.2008.02.047
[10]Ding, F.; Liu, P. X.; Yang, H. Z.: Parameter identification and intersample output estimation for dual-rate systems, IEEE transactions on systems, man, and cybernetics, part A: systems and humans 38, No. 4, 966-975 (2008)
[11]Wang, D. Q.; Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein–Wiener ARMAX systems, Computers mathematics with applications 56, No. 12, 3157-3164 (2008) · Zbl 1165.65308 · doi:10.1016/j.camwa.2008.07.015
[12]Ding, F.; Chen, T.: Performance analysis of multi-innovation gradient type identification methods, Automatica 43, No. 1, 1-14 (2007) · Zbl 1140.93488 · doi:10.1016/j.automatica.2006.07.024
[13]Ding, F.; Liu, P. X.; Liu, G.: Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal processing 89, No. 10, 1883-1890 (2009) · Zbl 1178.94137 · doi:10.1016/j.sigpro.2009.03.020
[14]Han, L. L.; Ding, F.: Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital signal processing 19, No. 4, 545-554 (2009)
[15]Liu, Y. J.; Xiao, Y. S.; Zhao, X. L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Applied mathematics and computation 215, No. 4, 1477-1483 (2009) · Zbl 1177.65095 · doi:10.1016/j.amc.2009.07.012
[16]Ding, F.; Liu, X. P.; Shi, Y.: Convergence analysis of estimation algorithms of dual-rate stochastic systems, Applied mathematics and computation 176, No. 1, 245-261 (2006) · Zbl 1095.65056 · doi:10.1016/j.amc.2005.09.048
[17]Chen, X. M.; Ding, F.: Stochastic gradient algorithms for AR models with missing data, Science technology and engineering 8, No. 8, 2145-2147 (2008)
[18]Goodwin, G. C.; Sin, K. S.: Adaptive filtering prediction and control, (1984)
[19]Ding, F.; Shi, Y.; Chen, T.: Performance analysis of estimation algorithms of non-stationary ARMA processes, IEEE transactions on signal processing 54, No. 3, 1041-1053 (2006)
[20]Ding, F.; Yang, H. Z.; Liu, F.: Performance analysis of stochastic gradient algorithms under weak conditions, Science in China series F–information sciences 51, No. 9, 1269-1280 (2008) · Zbl 1145.93050 · doi:10.1007/s11432-008-0117-y
[21]Ding, F.; Chen, T.: Identification of Hammerstein nonlinear ARMAX systems, Automatica 41, No. 9 (2005) · Zbl 1086.93063 · doi:10.1016/j.automatica.2005.03.026
[22]Ding, F.; Qiu, L.; Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45, No. 2, 324-332 (2009) · Zbl 1158.93365 · doi:10.1016/j.automatica.2008.08.007
[23]Liu, Y. J.; Xie, L.; Ding, F.: An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems, Proceedings of the institution of mechanical engineers, part I: Journal of systems and control engineering 223, No. 4, 445-454 (2009)
[24]Ding, F.; Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica 41, No. 2, 315-325 (2005) · Zbl 1073.93012 · doi:10.1016/j.automatica.2004.10.010
[25]Ding, F.; Chen, T.: Hierarchical least squares identification methods for multivariable systems, IEEE transactions on automatic control 50, No. 3, 397-402 (2005)