zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boundary-layer flow of a nanofluid past a stretching sheet. (English) Zbl 1190.80017
Summary: The problem of laminar fluid flow which results from the stretching of a flat surface in a nanofluid has been investigated numerically. This is the first paper on stretching sheet in nanofluids. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. The variation of the reduced Nusselt and reduced Sherwood numbers with Nb and Nt for various values of Pr and Le is presented in tabular and graphical forms. It was found that the reduced Nusselt number is a decreasing function of each dimensionless number, while the reduced Sherwood number is an increasing function of higher Pr and a decreasing function of lower Pr number for each Le,Nb and Nt numbers.
80A20Heat and mass transfer, heat flow
60J65Brownian motion
76D10Boundary-layer theory, separation and reattachment, etc. (incompressible viscous fluids)
[1]Takhar, H. S.; Chamkha, A. J.; Nath, G.: Unsteady three-dimensional MHD-boundary-layer flow due to the impulsive motion of a stretching surface, Acta mech. 146, 59-71 (2001) · Zbl 0974.76097 · doi:10.1007/BF01178795
[2]Vleggaar, J.: Laminar boundary layer behaviour on continuous accelerating surface, Chem. eng. Sci. 32, 1517-1525 (1977)
[3]Crane, L. J.: Flow past a stretching plate, J. appl. Math. phys. (ZAMP) 21, 645-647 (1970)
[4]Lakshmisha, K. N.; Venkateswaran, S.; Nath, G.: Three-dimensional unsteady flow with heat and mass transfer over a continuous stretching surface, ASME J. Heat transfer 110, 590-595 (1988)
[5]Wang, C. Y.: The three-dimensional flow due to a stretching flat surface, Phys. fluids 27, 1915-1917 (1984) · Zbl 0545.76033 · doi:10.1063/1.864868
[6]Andersson, H. I.; Dandapat, B. S.: Flow of a power-law fluid over a stretching sheet, Saacm 1, 339-347 (1991)
[7]Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. Mech. B fluids 19, 109-122 (2000) · Zbl 0976.76021 · doi:10.1016/S0997-7546(00)00104-7
[8]Sparrow, E. M.; Abraham, J. P.: Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid, Int. J. Heat mass transfer 48, 3047-3056 (2005) · Zbl 1189.76143 · doi:10.1016/j.ijheatmasstransfer.2005.02.028
[9]Abraham, J. P.; Sparrow, E. M.: Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface, Int. J. Heat fluid flow 26, 289-295 (2005)
[10]Kakaç, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids, Int. J. Heat mass transfer 52, 3187-3196 (2009) · Zbl 1167.80338 · doi:10.1016/j.ijheatmasstransfer.2009.02.006
[11]S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 1995, pp. 99 – 105.
[12]Choi, S. U. S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A.: Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. phys. Lett. 79, 2252-2254 (2001)
[13]Khanafer, K.; Vafai, K.; Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat mass transfer 46, 3639-3653 (2003) · Zbl 1042.76586 · doi:10.1016/S0017-9310(03)00156-X
[14]Kang, H. U.; Kim, S. H.; Oh, J. M.: Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. heat transfer 19, 181-191 (2006)
[15]Maiga, S. E. B.; Palm, S. J.; Nguyen, C. T.; Roy, G.; Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flow, Int. J. Heat fluid flow 26, 530-546 (2005)
[16]Tiwari, R. K.; Das, M. K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat mass transfer 50, 2002-2018 (2007) · Zbl 1124.80371 · doi:10.1016/j.ijheatmasstransfer.2006.09.034
[17]Tzou, D. Y.: Thermal instability of nanofluids in natural convection, Int. J. Heat mass transfer 51, 2967-2979 (2008) · Zbl 1143.80330 · doi:10.1016/j.ijheatmasstransfer.2007.09.014
[18]Abu-Nada, E.: Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, Int. J. Heat fluid flow 29, 242-249 (2008)
[19]Oztop, H. F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat fluid flow 29, 1326-1336 (2008)
[20]Buongiorno, J.: Convective transport in nanofluids, ASME J. Heat transfer 128, 240-250 (2006)
[21]A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci. doi:10.1016/j.ijthermalsci.2009.07.015.
[22]Nield, D. A.; Kuznetsov, A. V.: The cheng-minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid, Int. J. Heat mass transfer 52, 5792-5795 (2009) · Zbl 1177.80046 · doi:10.1016/j.ijheatmasstransfer.2009.07.024
[23]Cheng, P.; Minkowycz, W. J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. geophys. Res. 82, 2040-2044 (1977)
[24]Wang, C. Y.: Free convection on a vertical stretching surface, J. appl. Math. mech. (ZAMM) 69, 418-420 (1989) · Zbl 0698.76092 · doi:10.1002/zamm.19890691115
[25]Gorla, R. S. R.; Sidawi, I.: Free convection on a vertical stretching surface with suction and blowing, Appl. sci. Res. 52, 247-257 (1994) · Zbl 0800.76421 · doi:10.1007/BF00853952