zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Expected residual minimization method for stochastic variational inequality problems. (English) Zbl 1190.90112
Summary: This paper considers a stochastic variational inequality problem (SVIP). We first formulate SVIP as an optimization problem (ERM problem) that minimizes the expected residual of the so-called regularized gap function. Then, we focus on a SVIP subclass in which the function involved is assumed to be affine. We study the properties of the ERM problem and propose a quasi-Monte Carlo method for solving the problem. Comprehensive convergence analysis is included as well.

MSC:
90C15Stochastic programming
References:
[1]Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)
[2]Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992) · Zbl 0756.90081 · doi:10.1007/BF01585696
[3]Fukushima, M.: Merit functions for variational inequality and complementarity problems. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications, pp. 155–170. Plenum, New York (1996)
[4]Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022–1038 (2005) · Zbl 1162.90527 · doi:10.1287/moor.1050.0160
[5]Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51–80 (2009) · Zbl 1165.90012 · doi:10.1007/s10107-007-0163-z
[6]De Wolf, D., Smeers, Y.: A stochastic version of a Stackelberg-Nash-Cournot equilibrium model. Manag. Sci. 43, 190–197 (1997) · Zbl 0889.90046 · doi:10.1287/mnsc.43.2.190
[7]Fang, H., Chen, X., Fukushima, M.: Stochastic R 0 matrix linear complementarity problems. SIAM J. Optim. 18, 482–506 (2007) · Zbl 1151.90052 · doi:10.1137/050630805
[8]Gürkan, G., Özge, A.Y., Robinson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999) · Zbl 0972.90079 · doi:10.1007/s101070050024
[9]Lin, G.H., Chen, X., Fukushima, M.: New restricted NCP function and their applications to stochastic NCP and stochastic MPEC. Optimization 56, 641–753 (2007) · Zbl 1172.90455 · doi:10.1080/02331930701617320
[10]Lin, G.H., Fukushima, M.: New reformulations for stochastic nonlinear complementarity problems. Optim. Methods Softw. 21, 551–564 (2006) · Zbl 1113.90110 · doi:10.1080/10556780600627610
[11]Ling, C., Qi, L., Zhou, G., Caccetta, L.: The SC’ property of an expected residual function arising from stochastic complementarity problems. Oper. Res. Lett. 36, 456–460 (2008) · Zbl 1155.90461 · doi:10.1016/j.orl.2008.01.010
[12]Zhang, C., Chen, X.: Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty. J. Optim. Theory Appl. 137, 277–295 (2008) · Zbl 1163.90034 · doi:10.1007/s10957-008-9358-6
[13]Patrick, B.: Probability and Measure. Wiley-Interscience, New York (1995)
[14]Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990) · Zbl 0734.90098 · doi:10.1007/BF01582255
[15]Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)
[16]Birge, J.R.: Quasi-Monte Carlo approaches to option pricing. Technical Report 94-19, Department of Industrial and Operations Engineering, University of Michigan (1994)