zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational inclusions problems with applications to Ekeland’s variational principle, fixed point and optimization problems. (English) Zbl 1190.90212
Summary: We prove the existence theorems of two types of systems of variational inclusions problem. From these existence results, we establish Ekeland’s variational principle on topological vector space, existence theorems of common fixed point, existence theorems for the semi-infinite problems, mathematical programs with fixed points and equilibrium constraints, and vector mathematical programs with variational inclusions constraints.
MSC:
90C30Nonlinear programming
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
65K10Optimization techniques (numerical methods)
References:
[1]Aubin J.P. and Cellina A. (1994). Differential Inclusion. Springer, Berlin, Germany
[2]Birbil S., Bouza G., Frenk J.B.G. and Still G. (2006). Equilibrium constrained optimization problems. Eur. J. Oper. Res. 169: 1108–1127 · Zbl 1079.90152 · doi:10.1016/j.ejor.2004.07.075
[3]Deguire P., Tan K.K. and Yuan G.X.Z. (1999). The study of maximal elements, fixed point for L s ajorized mappings and quasi-variational inequalities in product spaces. Nonlinear Anal. 37: 933–951 · Zbl 0930.47024 · doi:10.1016/S0362-546X(98)00084-4
[4]Ekeland I. (1972). Remarques sur les problems variationals. I. C. R.. Acad. Sci. Paris Ser. A-B 275: 1057–1059
[5]Ekeland I. (1974). On the variational principle. J. Math. Anal. Appl. 47: 324–353 · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[6]Fan K. (1952). Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad. Sci. USA 38: 121–126 · Zbl 0047.35103 · doi:10.1073/pnas.38.2.121
[7]Gopfer A., Tammer Chr. and Zálinescu C. (2000). On the vectorial Ekeland’s variational principle and minimal points in product spaces. Nonlinear Anal. 39: 909–922 · Zbl 0997.49019 · doi:10.1016/S0362-546X(98)00255-7
[8]Hamel A.H. (2003). Phelp’s lemma, Dane’s drop theorem and Ekeland’s principle in locally convex spaces. Proc. Am. Math. Soc. 131(10): 3025–3038 · Zbl 1033.49010 · doi:10.1090/S0002-9939-03-07066-7
[9]Himmelberg C.J. (1972). Fixed point of compact multifunctions. J. Math. Anal. Appl. 38: 205–207 · Zbl 0225.54049 · doi:10.1016/0022-247X(72)90128-X
[10]Huang N.J. (2001). A new class of generalized set-valued implicit variational inclusions in Banach spaces with applications. Comput. Math. Appl. 41(718): 937–943 · Zbl 0998.47044 · doi:10.1016/S0898-1221(00)00331-X
[11]Isac G. (2004). Nuclear cones in product spaces, Pareto efficiency and Ekeland’s-type variational principle in locally convex spaces. Optimization 53(3): 253–268 · Zbl 1059.49024 · doi:10.1080/02331930410001720923
[12]Lin L.J. (2007). Mathematical program with systems of equilibrium constraints. J. Glob. Optim. 37: 275–286 · Zbl 1140.90038 · doi:10.1007/s10898-006-9049-5
[13]Lin L.J. and Du W.S. (2006). Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323: 360–370 · Zbl 1101.49022 · doi:10.1016/j.jmaa.2005.10.005
[14]Lin L.J. and Ansari Q.H. (2004). Collective fixed points and maximal elements with applications to abstract economies. J. Math. Anal. Appl. 296: 455–472 · Zbl 1051.54028 · doi:10.1016/j.jmaa.2004.03.067
[15]Lin L.J. and Still G. (2006). Mathematical programs with equilibrium constraints: The existence of feasible points. Optimization 55: 205–216 · Zbl 1124.90033 · doi:10.1080/02331930600703635
[16]Lin, L.J.: Systems of generalized quasi-variational inclusions problems with applications to variational analysis and optimization problems. J. Glob. Optim. 38, (2007)
[17]Lin L.J. and Yu Z.T. (2001). On some equilibrium problems for multimaps. J. Comput. Appl. Math. 129: 171–183 · Zbl 0990.49003 · doi:10.1016/S0377-0427(00)00548-3
[18]Lin L.J. and Hsu H.W. (2007). Existence theorems of vector quasi-equilibrium problems with equilibrium constraints. J. Glob. Optim. 37: 195–213 · Zbl 1149.90136 · doi:10.1007/s10898-006-9044-x
[19]Lin L.J. and Huang Y.J. (2007). Generalized vector quasi-equilibrium problems with applications to common fixed point theorems and optimization problems. Nonlinear Anal. Theory Methods Appl. 66: 1275–1289 · Zbl 1192.90192 · doi:10.1016/j.na.2006.01.025
[20]Lin, L.J., Du, W.S.: Systems of Equilibrium problems with applications to generalized Ekeland’s variational principles and systems of semi-infinite problems. J. Glob. Optim. (2007)
[21]Luc D.T. (1989). Theory of Vector Optimization, Lectures Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin, Germany
[22]Luo Z.Q., Pang J.S. and Ralph D. (1997). Mathematical Program with Equilibrium Constraint. Cambridge University Press, Cambridge
[23]Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. I,II. Springer, Berlin, Heidelberg, New York (2006)
[24]Robinson S.M. (1979). Generalized equation and their solutions, part I: basic theory. Math. Program. Study 10: 128–141
[25]Tan N.X. (1985). Quasi-variational inequalities in topological linear locally convex Hausdorff spaces. Math. Nachr. 122: 231–245 · doi:10.1002/mana.19851220123
[26]Wong C-W. (2007). A drop theorem without vector topology. J. Math. Anal. Appl. 329: 452–471 · Zbl 1118.46008 · doi:10.1016/j.jmaa.2006.06.086