zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Can management measures ensure the biological and economical stabilizability of a fishing model? (English) Zbl 1190.93070
Summary: The development of fishing management modeling was motivated by the need to understand mechanisms governing production flows of marine reserves. Several bioeconomic models were built and their analyses helped to identify management measures adapted to specific objectives. The approach adopted in this work must interest both fishermen (economics aspect: represented in the model by a price dynamics) and ecologist (stock durability: represented in the model by stock dynamics). First, we analyze the biological and economic stabilizability of a non-autonomous model involving a time-varying price and where the control is the catch rate. Then we introduce two management measures: the total allowable catch quota (TAC) measure during a fishing period, and the biological rest period. We study the alternating problem between these two measures. Finally, we evaluate the optimal time for each period according to biological and economic parameters.
MSC:
93C95Applications of control theory
90B30Production models
91B76Environmental economics (natural resource models, harvesting, pollution, etc.)
92D40Ecology
49N90Applications of optimal control and differential games
References:
[1]Ami, D.; Cartigny, P.; Rapaport, A.: Can marine protected areas enhance both economic and biological situations?, C. R. Biol. 328, 357-366 (2005)
[2]Clark, C. W.: Mathematical bioeconomics: the optimal management of renewable resources, (1990) · Zbl 0712.90018
[3]Conrad, J. M.; Clark, C. W.: Naturel resource economics, (1987)
[4]Jerry, M.; Raïssi, N.: A policy of fisheries management based on continuous fishing effort, J. biol. Syst. 9, 247-254 (2001)
[5]Jerry, M.; Raïssi, N.: The optimal strategy for a bioeconomical model of a harvesting renewable resource problem, Math. comput. Modell. 36, 1293-1306 (2002) · Zbl 1077.91036 · doi:10.1016/S0895-7177(02)00277-7
[6]Clarke, F. H.; Munro, G. R.: Coastal states, distant water fishing nations and extended jurisdiction: A principal-agent analysis, Nat. res. Model. 2, 81-107 (1987) · Zbl 0850.90174
[7]Clarke, F. H.; Munro, G. R.: Coastal states, distant water fishing nations and extended jurisdiction: conflicting views of the future, Nat. res. Model. 3, 345-369 (1991)
[8]Raïssi: Features of bioeconomics models for the optimal management of a fishery exploited by two different fleets, Nat. res. Model. 14, 287-310 (2001) · Zbl 0986.91037 · doi:10.1111/j.1939-7445.2001.tb00060.x
[9]Bertignac, M.; Campbell, H. F.; Hampton, J.; Hand, A. J.: Maximazing resource rent from the western and central Pacific tuna fisheries, Marine resource econom. 15, No. 3, 151-177 (2000)
[10]Clark, C. W.; Lamberson, R. H.: An economic history and analysis of pelagic whaling, Marine policy 6, 103-120 (1982)
[11]Aubin, J. -P.: Optima and equilibria: an introduction to nonlinear analysis, (1993) · Zbl 0781.90012
[12]Walras, L.: Élements d’économie politique pure, rouge. Éditeur, (1896)
[13]Gatto, M.; Ghezzi, L. L.: Taxing overexploited open-access fisheries: the role of demand elasticities, Ecol. model. 80, 185-198 (1992)
[14]Svizzero: Cournot equilibrium with convex demand, Econom. lett. 54, 155-158 (1997) · Zbl 0902.90014 · doi:10.1016/S0165-1765(97)00023-2
[15]Lafrance, J. T.: Linear demand functions in theory and practice, J. econom. Theory 37, 147-166 (1985) · Zbl 0573.90018 · doi:10.1016/0022-0531(85)90034-1
[16]Mullon, C.; Fréon, P.: Prototype of an integrated model of the worldwide system of small pelagic fisheries, New horizons in environmental economics, 262-295 (2005)
[17]Lasselle, L.; Svizzero, S.; Tisdell, C.: Stability and cycles in a cobweb model with heterogenous expectations, Macroeconom. dynam. 9, 630-650 (2005) · Zbl 1101.91341 · doi:10.1017/S1365100505050017
[18]Pontryagin, L.; Boltyanski, V.; Gamkrelidze, R.; Michtchenko, E.: Théorie mathématique de processus optimaux, (1974)
[19]Trélat, E.: Contrôle optimal: théorie et applications, (2008)
[20]Brockett, R. W.: Asymptotic stability and feedback stabilization, Differential geometric control theory, 181-191 (1983) · Zbl 0528.93051
[21]Bonnard, B.; Chyba, M.: The role of singular trajectories in control theory, (2003)
[22]Bernstein, C.; Auger, P.; Poggiale, J. -C.: Predator migration decisions, the ideal free distribution and predator–prey dynamics, Am. nat. 153, 267-281 (1999)
[23]Grafton, R. Q.; Sandal, L. K.; Steinshamn, S. I.: How to improve the management of renewable resources: the case of Canada’s northern cod fisheries, Am. J. Agric. econ. 82, 570-580 (2000)
[24]Gilbert, D. J.: Use of a simple age-structured bioeconomic model to estimate long-run surpluses, Marine resource econom. 5, 23-42 (1988)
[25]Perko, L.: Differential equations and dynamical systems, (2000)
[26]Schäefer, M. B.: Some aspects of the dynamics of populations important to the management of the commercial marines fisheries, Bull. inter-amer. Tropical tuna com. 1, 25-26 (1954)
[27]Verhulst, F.: Nonlinear differential equations dynamical systems, (1996)