zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sums of products of Cauchy numbers. (English) Zbl 1191.05008
In the book of L. Comtet [Advanced combinatorics. The art of finite and infinite expansions. Dordrecht / Boston, D. Reidel Publishing Company. (1974; Zbl 0283.05001)], two kinds of Cauchy numbers are introduced. The present author studies sums of products of these numbers, which have not been studied earlier, by the method of coefficients. Among other results, he derives identities involving these sums and various numbers: Stirling, generalized Bernoulli, generalized Euler, Lah, and harmonic.
MSC:
05A15Exact enumeration problems, generating functions
11B68Bernoulli and Euler numbers and polynomials
References:
[1]Boole, G.: An investigation of the law of thought, (1984)
[2]Comtet, L.: Advanced combinatorics, (1974)
[3]Flajolet, P.; Odlyzko, A.: Singularity analysis of generating functions, SIAM J. Discrete math. 3, No. 2, 216-240 (1990) · Zbl 0712.05004 · doi:10.1137/0403019
[4]Flajolet, P.; Fusy, E.; Gourdon, X.; Panario, D.; Pouyanne, N.: A hybrid of Darboux’s method and singularity analysis in combinatorial asymptotics, The electron. J. combin. 13 (2006) · Zbl 1111.05006 · doi:emis:journals/EJC/Volume_13/Abstracts/v13i1r103.html
[5]Henrici, P.: Applied and computational complex analysis, I, (1988)
[6]Jagerman, D. L.: Difference equations with applications to queues, (2000)
[7]Merlini, D.; Sprugnoli, R.; Verri, M. Cecilia: The Cauchy numbers, Disc. math. 306, 1906-1920 (2006) · Zbl 1098.05008 · doi:10.1016/j.disc.2006.03.065
[8]Merlini, D.; Sprugnoli, R.; Verri, M. C.: The method of coefficients, Amer. math. Monthly 114, 40-57 (2007) · Zbl 1191.05006
[9]Milne-Thomson, L. M.: The calculus of finite differences, (1951)
[10]Riordan, J.: An introduction to combinatorial analysis, (1958) · Zbl 0078.00805