zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The primes contain arbitrarily long arithmetic progressions. (English) Zbl 1191.11025

This paper needs little introduction: in 2004, the authors proved [cf. Ann. Math. (2) 171, No. 3, 1753–1850 (2010; Zbl 1242.11071)] that the primes contain arbitrarily long arithmetic progressions, a startling result considering that the previous state of the art had been an infinitude of four term arithmetic progressions in which three elements were prime and the fourth a product of at most two primes. As frequently happens when an old problem falls, the solution also precipitated a vast new theory of linear forms in the primes which looks like it will lead to a resolution of the Hardy-Littlewood conjecture for essentially all systems except those describing structures such as twin primes or the Goldbach conjecture. This will be a major achievement, and although the theory has moved on somewhat from this opening of the door, it is still very much worth reading.

The main idea of the paper is a transference principle allowing the authors to transfer results from vanilla structures to pseudo-random versions. They then use some estimates of Goldston and Yıldırım to show that in a suitable sense subsets of the primes behave pseudo-randomly, which allows them to transfer Szemerédi’s theorem to subsets of the primes. A good introduction to this sphere of ideas may be found in the earlier paper of Green where this result is proved for three term progressions.


MSC:
11N13Primes in progressions
37A45Relations of ergodic theory with number theory and harmonic analysis
11B25Arithmetic progressions
11A41Elementary prime number theory