zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact three-wave solutions for the KP equation. (English) Zbl 1191.35228
Summary: A new type of three-wave solution, periodic two-solitary-wave solutions, for (1+2)D Kadomtsev-Petviashvili (KP) equation is obtained using the extended three-soliton method and with the help of Maple.
MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35B10Periodic solutions of PDE
35C08Soliton solutions of PDE
35-04Machine computation, programs (partial differential equations)
Software:
Maple
References:
[1]Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution and inverse scattering, (1991) · Zbl 0762.35001
[2]Konopechenko, B.: Solitons in, multidimensions inverse spectral transform method, (1993) · Zbl 0836.35002
[3]Kadomtsev, B. B.; Petviashvili, V. I.: On the stability of solitary waves in weakly dispersive media, Soviet. phys. Dokl. 15, 539-541 (1970) · Zbl 0217.25004
[4]Ukai, S.: Local solutions of the Kadomtsev – Petviashvili equation, J. fac. Sci. univ. Tokyo, sect. IA math. 36, 193-209 (1989) · Zbl 0703.35155
[5]Bakuzov, V.; Rbuiioug, H. K.; Jiang, Z.; Manakov, S. V.: Complete integrability of the KP equation, Physica D 28, No. 1, 235 (1987)
[6]Cheng, Y.; Li, Y. S.: The constraint of the Kadomtsev – Petviashvili equation and its special solutions, Phys. lett. A 157, 22-26 (1991)
[7]Isaza, P.; Mejia, J.; Stallbohm, V. J.: Local solution for the Kadomtsev – Petviashvili equation in R2, Math. anal. Appl. 196, No. 2, 566-587 (1995) · Zbl 0844.35107 · doi:10.1006/jmaa.1995.1426
[8]Tajiri, M.; Watanabe, Y.: Periodic soliton solutions as imbricate series of rational solitons:solutions to the Kadomtsev – Petviashvili equation with positive dispersion, Nonlinear math. Phys. 4, No. 3-4, 350-357 (1997) · Zbl 0949.35123 · doi:10.2991/jnmp.1997.4.3-4.9
[9]Zhu, J.: Multisoliton excitations for the Kadomtsev – Petviashvili equation and the coupled Burgers equation, Chaos soliton fract. 31, No. 3, 648-657 (2007) · Zbl 1139.35391 · doi:10.1016/j.chaos.2005.10.012
[10]Yomba, E.: Construction of new soliton-like solutions for the (2+1)dimensional Kadomtsev – Petviashvili equation, Chaos soliton fract. 22, No. 2, 321-325 (2004) · Zbl 1063.35141 · doi:10.1016/j.chaos.2004.02.001
[11]Tagumi, Y.: Soliton-like solutions to a (2+1)-dimensional generalization of the KdV equation, Phys. lett. A 141, 116-120 (1989)
[12]Biswas, Anjan; Ranasinghe, Arjuna: 1-soliton solution of the Kadomtsev – Petviashvili equation with power law nonlinearity, App. math. Comput. 214, 645-647 (2009) · Zbl 1172.35476 · doi:10.1016/j.amc.2009.04.001
[13]Biswas, Anjan; Ranasinghe, Arjuna: 1-soliton solution of the Kadomtsev – Petviashvili equation with power law nonlinearity, Appl. math. Comput. 214, 645-647 (2009) · Zbl 1172.35476 · doi:10.1016/j.amc.2009.04.001
[14]Dai, Z.; Huang, Y.; Sun, X.; Li, D.; Hu, Z.: Exact singular and non-singular solitary-wave solutions for Kadomtsev – Petviashvili equation with p-power of nonlinearity, Chaos soliton fract. 40, 946-951 (2009) · Zbl 1197.35221 · doi:10.1016/j.chaos.2007.08.050
[15]Dai, Z.; Li, S.; Dai, Q.; Huang, J.: Singular periodic soliton solutions and resonance for the Kadomtsev – Petviashvili equation, Chaos soliton fract. 34, No. 4, 1148-1153 (2007) · Zbl 1142.35563 · doi:10.1016/j.chaos.2006.04.028
[16]Dai, Z.; Li, S.; Li, D.; Zhu, A.: Periodic bifurcation and soliton deflexion for Kadomtsev – Petviashvili equation, Chin. phys. Lett. 24, No. 6, 1429-1433 (2007)