zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability in cellular neural networks with a piecewise constant argument. (English) Zbl 1191.68484
Summary: By using the concept of differential equations with piecewise constant arguments of generalized type, a model of cellular neural networks is developed. The Lyapunov-Razumikhin technique is applied to find sufficient conditions for the uniform asymptotic stability of equilibria. Global exponential stability is investigated by means of Lyapunov functions. An example with numerical simulations is worked out to illustrate the results.
MSC:
68T05Learning and adaptive systems
References:
[1]Akhmet, M. U.: On the integral manifolds of the differential equations with piecewise constant argument of generalized type, Proceedings of the conference on differential and difference equations at the Florida institute of technology, August 1–5, 2005, Melbourne, florida, 11-20 (2006) · Zbl 1133.34040
[2]Akhmet, M. U.: Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear anal. 66, 367-383 (2007) · Zbl 1122.34054 · doi:10.1016/j.na.2005.11.032
[3]Akhmet, M. U.: On the reduction principle for differential equations with piecewise constant argument of generalized type, J. math. Anal. appl. 336, 646-663 (2007) · Zbl 1134.34048 · doi:10.1016/j.jmaa.2007.03.010
[4]Akhmet, M. U.: Stability of differential equations with piecewise constant arguments of generalized type, Nonlinear anal. 68, 794-803 (2008) · Zbl 1173.34042 · doi:10.1016/j.na.2006.11.037
[5]Chua, L. O.; Yang, L.: Cellular neural networks: theory, IEEE trans. Circuits syst. 35, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[6]Chua, L. O.; Yang, L.: Cellular neural networks: applications, IEEE trans. Circuits syst. 35, 1273-1290 (1988)
[7]L.O. Chua, T. Roska, Cellular neural networks with nonlinear and delay-type template elements, in: Proc. 1990 IEEE Int. Workshop on Cellular Neural Networks and their Applications, 1990, p. 1225
[8]Cao, J.: Global asymptotic stability of neural networks with transmission delays, Internat. J. Systems sci. 31, 1313-1316 (2000) · Zbl 1080.93517 · doi:10.1080/00207720050165807
[9]Cao, J.: On stability of delayed cellular neural networks, Phys. lett. A 261, 303-308 (1999) · Zbl 0935.68086 · doi:10.1016/S0375-9601(99)00552-6
[10]Cao, J.: Global stability conditions for delayed cnns, IEEE trans. Circuits syst. I 48, 1330-1333 (2001) · Zbl 1006.34070 · doi:10.1109/81.964422
[11]Arik, S.: An analysis of global asymptotic stability of delayed cellular neural networks, IEEE trans. Neural netw. 13, 1239-1242 (2002)
[12]Mohamad, S.; Gopalsamy, K.: Exponential stability of continuous-time and discrete-time cellular neural networks with delays, Appl. math. Comput. 135, 17-38 (2003) · Zbl 1030.34072 · doi:10.1016/S0096-3003(01)00299-5
[13]Liao, X.; Wu, Z.; Yu, J.: Stability analyses of cellular neural networks with continuous time delay, J. comput. Appl. math. 143, 29-47 (2002) · Zbl 1032.34072 · doi:10.1016/S0377-0427(01)00503-9
[14]Xu, S.; Lamb, J.; Ho, D. W. C.; Zou, Y.: Delay-dependent exponential stability for a class of neural networks with time delays, J. comput. Appl. math. 183, 16-28 (2005) · Zbl 1097.34057 · doi:10.1016/j.cam.2004.12.025
[15]Gyri, I.; Hartung, F.: Stability analysis of a single neuron model with delay, J. comput. Appl. math. 157, No. 1, 73-92 (2003) · Zbl 1031.65086 · doi:10.1016/S0377-0427(03)00376-5
[16]Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: Novel global asymptotic stability criteria for delayed cellular neural networks, IEEE trans. Circuits syst. Express briefs 52, No. 6, 349-353 (2005)
[17]Roska, T.; Wu, C. W.; Balsi, M.; Chua, L. O.: Stability and dynamics of delay-type general and cellular neural networks, IEEE trans. Circuits syst. I 39, No. 6, 487-490 (1992) · Zbl 0775.92010 · doi:10.1109/81.153647
[18]Xu, S.; Lam, J.; Ho, D. W. C.: Delay-dependent asymptotic stability of neural networks with time-varying delays, Internat. J. Bifur. chaos appl. Sci. engrg. 18, No. 1, 245-250 (2008) · Zbl 1156.34058 · doi:10.1142/S0218127408020276
[19]Liao, X.; Chen, G.; Sanchez, E. N.: LMI-based approach for asymptotically stability analysis of delayed neural networks, IEEE trans. Circuits syst. I 49, 1033-1039 (2002)
[20]M.U. Akhmet, E. Yılmaz, Impulsive Hopfield-type neural networks systems with piecewise constant argument, Nonlinear Anal.: RWA (in press) · Zbl 1202.92001 · doi:10.1016/j.nonrwa.2009.09.003
[21]Gui, Z.; Ge, W.: Existence and uniqueness of periodic solutions of nonautonomous cellular neural networks with impulses, Phys. lett. A 354, 84-94 (2006)
[22]Guan, Z.; James, L.; Chen, G.: On impulsive auto-associative neural networks, Neural netw. 13, 63-69 (2000)
[23]Dai, L.; Singh, M. C.: On oscillatory motion of spring-mass systems subjected to piecewise constant forces, J. sound vibration 173, 217-232 (1994) · Zbl 1078.70506 · doi:10.1006/jsvi.1994.1227
[24]Muroya, Y.: Persistence, contractivity and global stability in logistic equations with piecewise constant delays, J. math. Anal. appl. 270, 602-635 (2002) · Zbl 1012.34076 · doi:10.1016/S0022-247X(02)00095-1
[25]Yang, X.: Existence and exponential stability of almost periodic solution for cellular neural networks with piecewise constant argument, Acta math. Appl. sin. 29, 789-800 (2006)
[26]Cooke, K. L.; Wiener, J.: Retarded differential equations with piecewise constant delays, J. math. Anal. appl. 99, 265-297 (1984) · Zbl 0557.34059 · doi:10.1016/0022-247X(84)90248-8
[27]Wiener, J.: Generalized solutions of functional differential equations, (1993)
[28]Krasovskii, N. N.: Stability of motion, applications of Lyapunov’s second method to differential systems and equations with delay, (1963) · Zbl 0109.06001
[29]Xu, J.; Cao, Y. Y.; Pi, D.; Sun, Y.: An estimation of the domain of attraction for recurrent neural networks with time-varying delays, Neuorocomputing 71, 1566-1577 (2008)
[30]Zhang, Q.; Wei, X.; Xu, J.: An analysis on the global asymptotic stability for neural networks with variable delays, Phys. lett. A 328, 163-169 (2004) · Zbl 1134.34330 · doi:10.1016/j.physleta.2004.06.028
[31]Ahmad, S.; Stamova, I. M.: Global exponential stability for impulsive cellular neural networks with time-varying delays, Nonlinear anal. 69, 786-795 (2008) · Zbl 1151.34061 · doi:10.1016/j.na.2008.02.067
[32]Hale, J. K.: Theory of functional differential equations, (1997)
[33]Razumikhin, B. S.: Stability of delay systems, Prikl. mat. Mekh. (Russian) 20, 500-512 (1956)
[34]Gyri, I.; Ladas, G.: Oscillation theory of delay differential equations with applications, (1991) · Zbl 0780.34048
[35]Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: Global robust exponential stability analysis for interval recurrent neural networks, Phys. lett. A 325, No. 2, 124-133 (2004) · Zbl 1161.93335 · doi:10.1016/j.physleta.2004.03.038
[36]Xu, S.; Lam, J.; Ho, D. W. C.: A new LMI condition for delay-dependent asymptotic stability of delayed Hopfield neural networks, IEEE trans. Circuits syst. Express briefs 53, No. 3, 230-234 (2006)
[37]Sanchez, E. N.; Perez, J. P.: Input-to-state stability (ISS) analysis for dynamic neural networks, IEEE trans. Circuits syst. I 46, 1395-1398 (1999) · Zbl 0956.68133 · doi:10.1109/81.802844
[38]Akhmet, M. U.; Aruğaslan, D.: Lyapunov–razumikhin method for differential equations with piecewise constant argument, Discrete contin. Dyn. syst. 25, No. 2, 457-466 (2009) · Zbl 1179.34077 · doi:10.3934/dcds.2009.25.457