zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Regularized least square regression with dependent samples. (English) Zbl 1191.68535
Summary: We study the learning performance of regularized least square regression with α-mixing and φ-mixing inputs. The capacity independent error bounds and learning rates are derived by means of an integral operator technique. Even for independent samples, our learning rates improve those in the literature. The results are sharp in the sense that when the mixing conditions are strong enough the rates are shown to be close to or the same as those for learning with independent samples. They also reveal interesting phenomena of learning with dependent samples: (i) dependent samples contain less information and lead to worse error bounds than independent samples; (ii) the influence of the dependence between samples to the learning process decreases as the smoothness of the target function increases.
68T05Learning and adaptive systems
68P05Data structures
42B10Fourier type transforms, several variables
[1]Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950) · doi:10.1090/S0002-9947-1950-0051437-7
[2]Athreya, K.B., Pantula, S.G.: Mixing properties of Harris chains and autoregressive processes. J. Appl. Probab. 23, 880–892 (1986) · Zbl 0623.60087 · doi:10.2307/3214462
[3]Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res. 3, 463–482 (2002) · Zbl 1084.68549 · doi:10.1162/153244303321897690
[4]Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
[5]Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2, 499–526 (2002) · Zbl 1007.68083 · doi:10.1162/153244302760200704
[6]Cucker, F., Zhou, D.X.: Learning Theory: An Approximation Theory Viewpoint. Cambridge University Press, Cambridge (2007)
[7]Davydov, Y.A.: The invariance principle for stationary processes. Theory Probab. Appl. 14, 487–498 (1970) · Zbl 0219.60030 · doi:10.1137/1115050
[8]Dehling, H., Philipp, W.: Almost sure invariance principles for weakly dependent vector-valued random variables. Ann. Probab. 10, 689–701 (1982) · Zbl 0487.60006 · doi:10.1214/aop/1176993777
[9]Evgeniou, T., Pontil, M., Poggio, T.: Regularization networks and support vector machines. Adv. Comput. Math. 13, 1–50 (2000) · Zbl 0939.68098 · doi:10.1023/A:1018946025316
[10]Li, L.Q., Wan, C.G.: Support vector machines with beta-mixing input sequences. In: Wang, J., et al. (eds.) Lecture Notes on Computer Science, vol. 3971, pp. 928–935. Springer, New York (2006)
[11]Modha, D.S.: Minimum complexity regression estimation with weakly dependent observations. IEEE. Trans. Inform. Theory 42, 2133–2145 (1996) · Zbl 0868.62015 · doi:10.1109/18.556602
[12]Smale, S., Zhou, D.X.: Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41, 279–305 (2004) · Zbl 1107.94007 · doi:10.1090/S0273-0979-04-01025-0
[13]Smale, S., Zhou, D.X.: Shannon sampling II: connections to learning theory. Appl. Comput. Harmon. Anal. 19, 285–302 (2005) · Zbl 1107.94008 · doi:10.1016/j.acha.2005.03.001
[14]Smale, S., Zhou, D.X.: Learning theory estimates via integral operators and their approximations. Constr. Approx. 26, 153–172 (2007) · Zbl 1127.68088 · doi:10.1007/s00365-006-0659-y
[15]Vidyasagar, M.: Learning and Generalization with Applications to Neural Networks. Springer, Berlin Heidelberg New York (2003)
[16]Withers, C.S.: Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings. Neural Netw. 3, 535–549 (2000)
[17]Wu, Q., Ying, Y.M., Zhou, D.X.: Learning rates of least-square regularized regression. Found. Comput. Math. 6, 171–192 (2006) · Zbl 1100.68100 · doi:10.1007/s10208-004-0155-9
[18]Xu, Y.L., Chen, D.R.: Learning rates of regularized regression for exponentially strongly mixing sequence. J. Statist. Plann. Inference 138(7), 2180–2189 (2008)
[19]Zhang, T.: Leave-one-out bounds for kernel methods. Neural Comput. 15, 1397–1437 (2003) · Zbl 1085.68144 · doi:10.1162/089976603321780326