zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Formal reasoning with rough sets in multiple-source approximation systems. (English) Zbl 1191.68684
Summary: We focus on families of Pawlak approximation spaces, called multiple-source approximation systems (MSASs). These reflect the situation where information arrives from multiple sources. The behaviour of rough sets in MSASs is investigated – different notions of lower and upper approximations, and definability of a set in a MSAS are introduced. In this context, a generalized version of an information system, viz. multiple-source knowledge representation (KR)-system, is discussed. Apart from the indiscernibility relation which can be defined on a multiple-source KR-system, two other relations, viz. similarity and inclusion are considered. To facilitate formal reasoning with rough sets in MSASs, a quantified propositional modal logic LMSAS is proposed. Interpretations for sets of well-formed formulae (wffs) of LMSAS are defined on MSASs, and the various properties of rough sets in MSASs translate into logically valid wffs of the system. LMSAS is shown to be sound and complete with respect to this semantics. Some decidable problems are addressed. In particular, it is shown that for any LMSAS-wff α, it is possible to check whether α is satisfiable in a certain class of interpretations with MSASs of a given finite cardinality. Moreover, it is also decidable whether any wff α is satisfiable in the class of all interpretations with MSASs having domain of a given finite cardinality.
MSC:
68T37Reasoning under uncertainty
References:
[1]Banerjee, M.; Khan, M. A.: Propositional logics from rough set theory, Transactions on rough sets 6, 1-25 (2007) · Zbl 1186.68446 · doi:10.1007/978-3-540-71200-8_1
[2]Bull, R. A.: On modal logic with propositional quantifiers, Journal of symbolic logic 34, No. 2, 257-263 (1969) · Zbl 0184.28101 · doi:10.2307/2271102
[3]Fagin, R.; Halpern, J. Y.; Moses, Y.; Vardi, M. Y.: Reasoning about knowledge, (1995) · Zbl 0839.68095
[4]Del Cerro, L. Farinas; Orłowska, E.: DAL – a logic for data analysis, Theoretical computer science 36, 251-264 (1997) · Zbl 0565.68032 · doi:10.1016/0304-3975(85)90046-5
[5]S. Greco, B. Matarazzo, R. Słowiński, Parametrized rough set model using rough membership and Bayesian confirmation measures, International Journal of Approximate Reasoning, in press, doi:10.1016/j.ijar.2007.05.018.
[6]Hughes, G. E.; Cresswell, M. J.: A new introduction to modal logic, (1996)
[7]Katzberg, J.; Ziarko, W.: Variable precision rough sets with asymmetric bounds, Proceedings of the international workshop on rough sets and knowledge discovery (RSKD’93), Banff, Canada, October 1993, 163-191 (1993)
[8]Kripke, S. A.: A completeness theorem in modal logic, Journal of symbolic logic 24, No. 1, 1-14 (1959) · Zbl 0091.00902 · doi:10.2307/2964568
[9]Liau, C. J.: An overview of rough set semantics for modal and quantifier logics, International journal of uncertainty fuzziness and knowledge based systems 8, No. 1, 93-118 (2000) · Zbl 1113.03309 · doi:10.1142/S0218488500000071
[10]Orłowska, E.; Pawlak, Z.: Representation of nondeterministic information, Theoretical computer science 29, 27-39 (1984) · Zbl 0537.68098 · doi:10.1016/0304-3975(84)90010-0
[11]Orłowska, E.: Kripke semantics for knowledge representation logics, Studia logica 49, 255-272 (1990) · Zbl 0726.03023 · doi:10.1007/BF00935602
[12]Pagliani, P.; Chakraborty, M. K.: Information quanta and approximation spaces I: Non-classical approximation operators, , 605-610 (2005)
[13]Pagliani, P.: Pretopologies and dynamic spaces, Fundamenta informaticae 59, No. 2 – 3, 221-239 (2004) · Zbl 1098.68131
[14]Pawlak, Z.; Skowron, A.: Rough sets: some extensions, Information sciences 177, 28-40 (2007) · Zbl 1142.68550 · doi:10.1016/j.ins.2006.06.006
[15]Pawlak, Z.: Rough sets, International journal of computer & information sciences 11, No. 5, 341-356 (1982)
[16]Pawlak, Z.: Rough sets. Theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[17]Rasiowa, R.: Mechanical proof systems for logic of reaching consensus by groups of intelligent agents, International journal of approximate reasoning 5, No. 4, 415-432 (1991) · Zbl 0738.68073 · doi:10.1016/0888-613X(91)90020-M
[18]Rauszer, C.: Knowledge representation systems for groups of agents, Philosophical logic in Poland, 217-238 (1994)
[19]Skowron, A.; Stepaniuk, J.: Tolerance approximation spaces, Fundamenta informaticae 27, 245-253 (1996) · Zbl 0868.68103
[20]A. Skowron, Approximate reasoning in MAS: rough set approach, in: Proceedings 2006 IEEE/WIC/ACM Conference on Intelligent Agent Technology, IEEE Computer Society, Washington, 2006, pp. 12 – 18.
[21]Śle&cedil, D.; Zak; Ziarko, W.: The investigation of the Bayesian rough set model, International journal of approximate reasoning 40, 81-91 (2005)
[22]Vakarelov, D.: Abstract characterization of some knowledge representation systems and the logic NIL of nondeterministic information, Artificial intelligence II, 255-260 (1987)
[23]Wong, S. K. M.: A rough set model for reasoning about knowledge, Rough sets in knowledge discovery 1: methodology and applications, 276-285 (1998) · Zbl 0946.68136
[24]Yao, Y. Y.; Wong, S. K. M.; Lin, T. Y.: A review of rough set models, Rough sets and data mining: analysis for imprecise data, 47-75 (1997) · Zbl 0861.68101
[25]Y.Y. Yao, Probabilistic rough set approximations, International Journal of Approximate Reasoning, in press, doi:10.1016/j.ijar.2007.05.019.
[26]W. Ziarko, Probabilistic approach to rough sets, International Journal of Approximate Reasoning, in press, doi:10.1016/j.ijar.2007.06.014.