zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy rough approximations of process data. (English) Zbl 1191.68694
Summary: This paper concerns the variable precision fuzzy rough set (VPFRS) model with asymmetric bounds. The discussion of the presented approach is preceded by a comparison of the original crisp rough set paradigm to the variable precision crisp rough set model. As a new aspect, a unified form of expressing the lower and upper crisp approximations is considered. It can be applied to defining new fuzzy rough set models. Crucial notions of the VPFRS model are redefined and explained. A new way of determining the upper variable precision fuzzy rough approximation is proposed. The VPFRS model is used for describing and analyzing the control actions which are accomplished by a human operator, who controls a complex dynamic system. The decision model is expressed by means of a decision table with fuzzy attributes. Decision tables are generated by the fuzzification of crisp data based on a set of fuzzy linguistic values of the attributes. A T-similarity relation is chosen for comparing elements of the universe. In an illustrative example, the task of stabilization of the aircraft’s bank angle during a turn maneuver is analyzed.
MSC:
68T37Reasoning under uncertainty
93C42Fuzzy control systems
References:
[1]Bandler, W.; Kohout, L.: Fuzzy power sets and fuzzy implication operators, Fuzzy sets and systems 4, 13-30 (1980) · Zbl 0433.03013 · doi:10.1016/0165-0114(80)90060-3
[2]Bodjanova, S.: Approximation of fuzzy concepts in decision making, Fuzzy sets and systems 85, 23-29 (1997) · Zbl 0907.90003 · doi:10.1016/0165-0114(95)00404-1
[3]Burillo, P.; Frago, N.; Fuentes, R.: Inclusion grade and fuzzy implication operators, Fuzzy sets and systems 114, 417-429 (2000) · Zbl 0962.03050 · doi:10.1016/S0165-0114(98)00128-6
[4]Chen, S. -M.; Yeh, M. -S.; Hsiao, P. -Y.: A comparison of similarity measures of fuzzy values, Fuzzy sets and systems 72, 79-89 (1995)
[5]Cornelis, C.; Van Der Donck, C.; Kerre, E.: Sinha – dougherty approach to the fuzzification of set inclusion revisited, Fuzzy sets and systems 134, 283-295 (2003) · Zbl 1013.03063 · doi:10.1016/S0165-0114(02)00225-7
[6]Cross, V. V.; Sudkamp, T. A.: Similarity and compatibility in fuzzy set theory, (2002)
[7]D. Dubois, H. Prade, Putting rough sets and fuzzy sets together, in: Słowiński [29], pp. 203 – 232.
[8]Salido, J. M. Fernández; Murakami, S.: Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations, Fuzzy sets and systems 139, 635-660 (2003) · Zbl 1047.68139 · doi:10.1016/S0165-0114(03)00124-6
[9]Greco, S.; Matarazzo, B.; Słowiński, R.: The use of rough sets and fuzzy sets in MCDM, Advances in multiple criteria decision making, 14.1-14.59 (1999) · Zbl 0948.90078
[10]Greco, S.; Matarazzo, B.; Słowiński, R.: Rough set processing of vague information using fuzzy similarity relations, Finite versus infinite — contributions to an eternal dilemma, 149-173 (2000)
[11]Greco, S.; Matarazzo, B.; Słowiński, R.; Stefanowski, J.: Variable consistency model of dominance-based rough set approach, Lecture notes in artificial intelligence 2005, 170-181 (2001) · Zbl 1014.68544 · doi:http://link.springer.de/link/service/series/0558/bibs/2005/20050170.htm
[12]S. Greco, M. Inuiguchi, R. Słowiński, Rough sets and gradual decision rules, in: Wang et al. [31], pp. 156 – 164. · Zbl 1026.68627 · doi:http://link.springer.de/link/service/series/0558/bibs/2639/26390156.htm
[13]S. Greco, B. Matarazzo, R. Słowiński, Rough membership and bayesian confirmation measures for parametrized rough sets, in: Ślecedil;zak et al. [28], pp. 314 – 324.
[14]M. Inuiguchi, Generalizations of rough sets: From crisp to fuzzy cases, in: Tsumoto et al. [30], pp. 26 – 37.
[15]Katzberg, J. D.; Ziarko, W.: Variable precision extension of rough sets, Fundamenta informaticae 27, 155-168 (1996) · Zbl 0858.90084
[16]T.Y. Lin, Topological and fuzzy rough sets, in: Słowiński [29], pp. 287 – 304.
[17]T.Y. Lin, Coping with Imprecision Information — Fuzzy Logic, Downsizing Expo, Santa Clara Convention Center, 1993.
[18]Mieszkowicz-Rolka, A.; Rolka, L.: Variable precision rough sets in analysis of inconsistent decision tables, Advances in soft computing, 304-309 (2003)
[19]Mieszkowicz-Rolka, A.; Rolka, L.: Fuzziness in information systems, Electronic notes in theoretical computer science 82 (2003)
[20]Mieszkowicz-Rolka, A.; Rolka, L.: Variable precision fuzzy rough sets, Lecture notes in computer science (Journal subline) 3100, 144-160 (2004) · Zbl 1104.68767 · doi:10.1007/b98175
[21]A. Mrózek, Rough sets in computer implementation of rule-based control of industrial processes, in: Słowiński [29], pp. 19 – 31.
[22]Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[23]Pawlak, Z.: AI and intelligent industrial applications: the rough set perspective, Cybernetics and systems: an international journal 31, 227-252 (2000) · Zbl 1061.68558 · doi:10.1080/019697200124801
[24]Peters, J. F.; Skowron, A.; Suraj, Z.: An application of rough sets methods in control design, Fundamenta informaticae 43, 269-290 (2000) · Zbl 0971.93052
[25]L. Polkowski, Toward rough set foundations. Mereological approach, in: Tsumoto et al. [30], pp. 8 – 25.
[26]Radzikowska, A. M.; Kerre, E. E.: A comparative study of fuzzy rough sets, Fuzzy sets and systems 126, 137-155 (2002) · Zbl 1004.03043 · doi:10.1016/S0165-0114(01)00032-X
[27]D. Ślecedil;zak, W. Ziarko, Variable precision bayesian rough set model, in: Wang et al. [31], pp. 312 – 315.
[28], Lecture notes in artificial intelligence 3641 (2005)
[29], Intelligent decision support: handbook of applications and advances of the rough sets theory (1992)
[30], Lecture notes in artificial intelligence 3066 (2004)
[31], Lecture notes in computer science 2639 (2003)
[32]W.N. Liu, J. Yao, Y. Yao, Rough approximations under level fuzzy sets, in: Tsumoto et al. [30], pp. 78 – 83.
[33]Ziarko, W.: Variable precision rough sets model, Journal of computer and system sciences 46, No. 1, 39-59 (1993) · Zbl 0764.68162 · doi:10.1016/0022-0000(93)90048-2
[34]W. Ziarko, Probabilistic rough sets, in: Ślecedil;zak et al. [28], pp. 283 – 293.