zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Magneto-double diffusive convection in an electrically conducting-fluid-saturated porous medium with temperature modulation of the boundaries. (English) Zbl 1191.80006
Summary: Thermal instability in an electrically conducting two component fluid-saturated-porous medium has been investigated, considering temperature modulation of the boundaries. The porous medium is confined between two horizontal surfaces subjected to a vertical magnetic field; flow in the porous medium is characterized by Brinkman-Darcy model. Making linear stability analysis and applying perturbation procedure, the correction in the critical Darcy Rayleigh number is calculated. It is found that the correction in the critical Darcy Rayleigh number is a function of frequency of modulation, solute Rayleigh number, diffusivities ratio, Darcy number, Darcy Chandrasekhar number, magnetic Prandtl number and the non-dimensional group number χ. Also the effects of various parameters on thermal instability have been studied; we found that these parameters may have stabilizing or destabilizing effects, thus may advance or delay the onset of convection. A comparison between the results from the present model has been made with that of Darcy model.
MSC:
80A20Heat and mass transfer, heat flow
76W05Magnetohydrodynamics and electrohydrodynamics
76S05Flows in porous media; filtration; seepage
76R50Diffusion (fluid mechanics)
References:
[1]W.E. Wallace, C.I. Pierce, W.K. Sawyer, Experiments on the flow of mercury in porous media in a transverse magnetic field, Report RI-7259(PB-184327), Bureau of Mines, Washington D.C. (1969) 18.
[2]Patil, Prabhamani R.; Rudraiah, N.: Stability of hydromagnetic thermoconvective flow through porous medium, Trans. ASME J. Appl. mech. 40, 879-884 (1973) · Zbl 0272.76054 · doi:10.1115/1.3423181
[3]Rudrauah, N.; Vortmeyer, D.: Stability of finite-amplitude and overstable convection of a conducting fluid through fixed porous bed, Warme-stoffubertrag 11, 241-254 (1978)
[4]Rudraiah, N.: Linear and non-linear megnetoconvection in a porous medium, Proc. indian acad. Sci. (Math. Sci.) 93, 117-135 (1984) · Zbl 0592.76132 · doi:10.1007/BF02840655
[5]Alchaar, S.; Vasseur, P.; Bilgen, E.: Effect of a magnetic field on the onset of convection in a porous medium, Heat mass transfer 30, 259-267 (1995)
[6]Alchaar, S.; Vasseur, P.; Bilgen, E.: Hydromagnetic natural convection in a tilted rectangular porous enclosure, Numer. heat transfer 27, 107-127 (1995)
[7]Bian, W.; Vasseur, P.; Bilgen, E.: Effect of an external magnetic field on buoyancy driven flow in a shallow porous cavity, Numer. heat transfer 29, 625-638 (1996)
[8]Bian, W.; Vasseur, P.; Bilgen, E.; Meng, F.: Effect of an electromagnetic field on natural convection in an inclined porous layer, Int. J. Heat fluid flow 17, 36-44 (1996)
[9]Oldenburg, C. M.; Borglin, S. E.; Moridis, G. J.: Numerical simulation of ferrofluid flow for subsurface environmental engineering applications, Transp. porous media 38, 319-344 (2000)
[10]Borglin, S. E.; Moridis, G. J.; Oldenburg, C. M.: Experimental studies of flow of ferrofluid in porous media, Transp. porous media 41, 61-80 (2000)
[11]Sekar, R.; Vaidyanathan, G.; Ramanathan, A.: The ferroconvection in fluids saturating a rotating densely packed porous medium, Int. J. Engng. sci. 31, 241-250 (1993) · Zbl 0825.76937 · doi:10.1016/0020-7225(93)90037-U
[12]Sekar, R.; Vaidyanathan, G.: Convective instability of a magnetized ferrofluid in a rotating porous medium, Int. J. Engng. sci. 31, 1139-1150 (1993) · Zbl 0774.76036 · doi:10.1016/0020-7225(93)90087-B
[13]Desaive, T.; Hennenberg, M.; Dauby, P. C.: Stabilite thermomagneto-convective d’un ferrofluide dans une couche poreuse en rotation, Mecanique industries 5, 621-625 (2004)
[14]Saravanan, S.; Yamaguchi, H.: Onset of centrifugal convection in a magnetic-fluid-saturated porous medium, Phys fluids 17, 1-9 (2005) · Zbl 1187.76463 · doi:10.1063/1.1999547
[15]Divya, Sunil; Sharma, R. C.: Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous media, J. geophys. Engng. 1, 116-127 (2004)
[16]Divya, Sunil; Sharma, R. C.: The effect of magnetic field dependent viscosity on thermosolutal convection in a ferromagnetic fluid saturating a porous medium, Transp. porous media 60, 251-274 (2005)
[17]Venezian, G.: Effect of modulation on the onset of thermal convection, J. fluid mech. 35, 243-254 (1969) · Zbl 0164.28901 · doi:10.1017/S0022112069001091
[18]Rosenblat, S.; Tanaka, G. A.: Modulation of thermal convection instability, Phys. fluids 14, 1319-1322 (1971) · Zbl 0224.76038 · doi:10.1063/1.1693608
[19]Roppo, M. N.; Davis, S. H.; Rosenblat, S.: Bénard convection with time-periodic heating, Phys. fluids 27, 796-803 (1984) · Zbl 0547.76092 · doi:10.1063/1.864707
[20]Bhadauria, B. S.: Time-periodic heating of Rayleigh – Bénard convection in a vertical magnetic field, Phys. scripta 73, 296-302 (2006) · Zbl 1087.76033 · doi:10.1088/0031-8949/73/3/010
[21]Catlagirone, J. P.: Stabilite d’une couche poreuse horizontale soumise a des conditions aux limites periodiques, Int. J. Heat mass transfer 18, 815-820 (1976) · Zbl 0329.76043 · doi:10.1016/0017-9310(76)90193-9
[22]Chhuon, B.; Caltagirone, J. P.: Stability of a horizontal porous layer with timewise periodic boundary conditions, ASME J. Heat transfer 101, 244-248 (1979)
[23]Rudraiah, N.; Malashetty, M. S.: Effect of modulation on the onset of convection in a sparsely packed porous layer, ASME J. Heat transfer 112, 685-689 (1990)
[24]Malashetty, M. S.; Basavaraja, D.: Rayleigh – Bénard convection subject to time dependent wall temperature/gravity in a fluid saturated anisotropic porous medium, Heat mass transfer 38, 551-563 (2002)
[25]Bhadauria, B. S.: Thermal modulation of Raleigh – Bénard convection in a sparsely packed porous medium, J. porous media 10, 175-188 (2007)
[26]Bhadauria, B. S.: Magneto fluid convection in a rotating porous layer under modulated temperature on the boundaries, ASME J. Heat transfer 129, 835-843 (2007)
[27]Bhadauria, B. S.: Combined effect of temperature modulation and magnetic field on the onset of convection in an electrically conducting-fluid-saturated porous medium, ASME J. Heat transfer 130, 052601-1-052601-9 (2008)
[28]Vadasz, P.: Coriolis effect on gravity-driven convection in a rotating porous layer heated from below, J. fluid mech. 376, 351-375 (1998) · Zbl 0943.76033 · doi:10.1017/S0022112098002961
[29]Nayfeh, A. H.: Introduction to perturbation techniques, (1981) · Zbl 0449.34001
[30]Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, (1981)
[31]Lapwood, E. R.: Convection of a fluid in a porous medium, Proc. camb. Phil. soc. 44, 508-521 (1948) · Zbl 0032.09203