zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on fractional-order derivatives of periodic functions. (English) Zbl 1191.93062
Summary: It is shown that the fractional-order derivatives of a periodic function with a specific period cannot be a periodic function with the same period. The fractional-order derivative considered here can be obtained based on each of the well-known definitions Grunwald-Letnikov definition, Riemann-Liouville definition and Caputo definition. This concluded point confirms the result of a recently published work proving the non-existence of periodic solutions in a class of fractional-order models. Also, based on this point it can be easily proved the absence of periodic responses in a wider class of fractional-order models. Finally, some examples are presented to show the applicability of the paper achievements in the solution analysis of fractional-order systems.
93C15Control systems governed by ODE
34A08Fractional differential equations
34K13Periodic solutions of functional differential equations