zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Atanassov’s intuitionistic fuzzy grade of hypergroups. (English) Zbl 1192.20065
This paper deals with connections between hypergroupoids and Atanassov’s intuitionistic fuzzy sets. First a sequence of join spaces is associated with a hypergroupoid H; the length of the sequence is called Atanassov’s intuitionistic fuzzy grade of H. Second, a theorem about the existence of a hypergroup with Atanassov’s intuitionistic fuzzy grade equal to n is proved.
MSC:
20N20Hypergroups (group theory)
20N25Fuzzy groups
08A72Fuzzy algebraic structures
References:
[1]Atanassov, K. T.: Intuitionistic fuzzy sets, Fuzzy sets syst. 20, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[2]Atanassov, K. T.: New operations defined over the intuitionistic fuzzy sets, Fuzzy sets syst. 61, 137-142 (1994) · Zbl 0824.04004 · doi:10.1016/0165-0114(94)90229-1
[3]Chvalina, J.; Chvalinova, L.: State hypergroups of automata, Acta math. Inform. univ. Ostraviensis 4, No. 1, 105-119 (1996) · Zbl 0870.20053
[4]P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993. · Zbl 0785.20032
[5]P. Corsini, Join spaces, power sets, fuzzy sets, in: Proc. Fifth International Congress on A.H.A., 1993, Iaşi, Romania, Hadronic Press, 1994, pp. 45 – 52. · Zbl 0847.20065
[6]Corsini, P.: A new connection between hypergroups and fuzzy sets, Southeast asian bull. Math. 27, 221-229 (2003) · Zbl 1059.20062
[7]Corsini, P.: Hyperstructures associated with fuzzy sets endowed with two membership functions, J. comb. Inform. syst. Sci. 31, 247-254 (2006) · Zbl 1231.03042
[8]Corsini, P.; Cristea, I.: Fuzzy grade of i.p.s. Hypergroups of order less or equal to 6, Pure math. Appl. 14, 275-288 (2003) · Zbl 1066.20070
[9]Corsini, P.; Cristea, I.: Fuzzy grade of i.p.s. Hypergroups of order 7, Iran. J. Fuzzy syst. 1, 15-32 (2004) · Zbl 1102.20056
[10]Corsini, P.; Leoreanu, V.: Join spaces associated with fuzzy sets, J. combin. Inform. syst. Sci. 20, No. 1 – 4, 293-303 (1995) · Zbl 0887.20045
[11]P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, 2003.
[12]Corsini, P.; Tofan, I.: On fuzzy hypergroups, Pure math. Appl. 8, 29-37 (1997) · Zbl 0906.20049
[13]Cristea, I.: A property of the connection between fuzzy sets and hypergroupoids, Ital. J. Pure appl. Math. 21, 73-82 (2007) · Zbl 1170.20316
[14]I. Cristea, About the fuzzy grade of the direct product of two hypergroupoids, Iran. J. Fuzzy Syst., in press. · Zbl 1218.20049
[15]Cristea, I.: Hyperstructures and fuzzy sets endowed with two membership functions, Fuzzy sets syst. 160, 1114-1124 (2009) · Zbl 1184.03052 · doi:10.1016/j.fss.2008.06.008
[16]Davvaz, B.: Fuzzy hv-groups, Fuzzy sets syst. 101, 191-195 (1999) · Zbl 0935.20065 · doi:10.1016/S0165-0114(97)00071-7
[17]Davvaz, B.: Fuzzy hv-submodules, Fuzzy sets syst. 117, 477-484 (2001) · Zbl 0974.16041 · doi:10.1016/S0165-0114(98)00366-2
[18]Davvaz, B.: TH and SH-interval valued fuzzy subhypergroups, Indian J. Pure appl. Math. 35, 61-69 (2004) · Zbl 1051.20042
[19]Davvaz, B.; Corsini, P.: Generalized fuzzy sub-hyperquasigroups of hyperquasigroups, Soft comput. 10, 1109-1114 (2006) · Zbl 1106.20055 · doi:10.1007/s00500-006-0048-8
[20]Davvaz, B.; Corsini, P.: Redefined fuzzy hv-submodules and many valued implications, Inform. sci. 177, 865-875 (2007) · Zbl 1109.16036 · doi:10.1016/j.ins.2006.04.009
[21]Davvaz, B.; Corsini, P.; Leoreanu-Fotea, V.: Atanassov’s intuitionistic (S,T)-fuzzy n-ary subhypergroups and their properties, Inform. sci. 179, 654-666 (2009) · Zbl 1179.20067 · doi:10.1016/j.ins.2008.10.023
[22]B. Davvaz, W.A. Dudek, Intuitionistic Hv-ideals, Int. J. Math. Math. Sci. (2006) Article ID 65921, 11 pp.
[23]Davvaz, B.; Dudek, W. A.; Jun, Y. B.: Intuitionistic fuzzy hv-submodules, Inform. sci. 176, 285-300 (2006) · Zbl 1090.16028 · doi:10.1016/j.ins.2004.10.009
[24]Davvaz, B.; Zhan, J.; Shum, K. P.: Generalized fuzzy hv-submodules endowed with interval valued membership functions, Inform. sci. 178, 315-3147 (2008) · Zbl 1149.16035 · doi:10.1016/j.ins.2008.03.016
[25]Dubois, D.; Gottwald, S.; Hajek, P.; Kacprzyk, J.; Prade, H.: Terminological difficulties in fuzzy set theory – the case of ”intuitionistic fuzzy sets”, Fuzzy sets syst. 156, 485-491 (2005) · Zbl 1098.03061 · doi:10.1016/j.fss.2005.06.001
[26]Dudek, W. A.; Davvaz, B.; Jun, Y. B.: On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, Inform. sci. 170, 251-262 (2005) · Zbl 1072.20088 · doi:10.1016/j.ins.2004.02.025
[27]Dudek, W. A.; Zhan, J.; Davvaz, B.: On intuitionistic (S,T)-fuzzy hypergroups, Soft comput. 12, 1229-1238 (2008) · Zbl 1154.20061 · doi:10.1007/s00500-008-0285-0
[28]Hung, W. L.; Yang, M. S.: On the J-divergence of intuitionistic fuzzy sets with its application to pattern recognition, Inform. sci. 178, 1641-1650 (2008) · Zbl 1134.68489 · doi:10.1016/j.ins.2007.11.006
[29]Jantosciak, J.: Homomorphism, equivalence and reductions in hypergroups, Riv. mat. Pura appl. 9, 23-47 (1991) · Zbl 0739.20037
[30]Jantosciak, J.: Reduced hypergroups, algebraic hyperstructures and applications, Proc. fourth int. Cong. Xanthi, Greece, 1990, 119-122 (1991)
[31]Jun, Y. B.: Quotient structures of intuitionistic fuzzy finite state machines, Inform. sci. 177, 4977-4986 (2007) · Zbl 1129.68040 · doi:10.1016/j.ins.2007.06.008
[32]Jun, Y. B.; Öztürk, M. A.; Park, C. H.: Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings, Inform. sci. 177, 4662-4677 (2007) · Zbl 1129.16041 · doi:10.1016/j.ins.2007.03.020
[33]Kazanci, O.; Yamak, S.; Davvaz, B.: The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets, Inform. sci. 178, 2349-2359 (2008) · Zbl 1141.16040 · doi:10.1016/j.ins.2008.01.006
[34]Kehagias, Ath; Serafimidis, K.: The L-fuzzy nakano hypergroup, Inform. sci. 169, 305-327 (2005) · Zbl 1069.08003 · doi:10.1016/j.ins.2004.05.010
[35]Leoreanu-Fotea, V.: A new type of fuzzy n-ary hyperstructures, Inform. sci. 179, 2710-2718 (2009) · Zbl 1187.20072 · doi:10.1016/j.ins.2009.03.017
[36]Leoreanu-Fotea, V.; Davvaz, B.: Roughness in n-ary hypergroups, Inform. sci. 178, 4114-4124 (2008) · Zbl 1187.20071 · doi:10.1016/j.ins.2008.06.019
[37]Lupiañez, F. G.: Nets and filters in intuitionistic fuzzy topological spaces, Inform. sci. 176, 2396-2404 (2006) · Zbl 1111.54006 · doi:10.1016/j.ins.2005.05.003
[38]F. Marty, Sur une generalization de la notion de group, in: Eighth Congress Math. Scandenaves, Stockholm 1934, pp. 45 – 49. · Zbl 61.1014.03
[39]Rosenfeld, A.: Fuzzy groups, J. math. Anal. appl. 35, 512-517 (1971) · Zbl 0194.05501 · doi:10.1016/0022-247X(71)90199-5
[40]Serafimidis, K.; Kehagias, Ath: Some remarks on congruences obtained from the L-fuzzy nakano hyperoperation, Inform. sci. 176, 301-320 (2006) · Zbl 1080.06017 · doi:10.1016/j.ins.2004.11.002
[41]&scedil, M.; Tefănescu; Cristea, I.: On the fuzzy grade of hypergroups, Fuzzy sets syst. 159, No. 9, 1097-1106 (2008)
[42]Vougiouklis, T.: Hyperstructures and their representations, (1994) · Zbl 0828.20076
[43]Xu, Z.; Chen, J.; Wu, J.: Clustering algorithm for intuitionistic fuzzy sets, Inform. sci. 178, 3775-3790 (2008)
[44]Yamak, S.; Kazanci, O.; Davvaz, B.: Applications of interval valued t-norms (t-conorms) to fuzzy n-ary sub-hypergroups, Inform. sci. 178, 3957-3972 (2008) · Zbl 1187.20073 · doi:10.1016/j.ins.2008.06.007
[45]Zadeh, L. A.: Fuzzy sets, Information and control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[46]Zahedi, M. M.; Hasankhani, A.: F-polygroups (II), Inform. sci. 89, 225-243 (1996) · Zbl 0880.20052 · doi:10.1016/0020-0255(95)00225-1
[47]Zhan, J.; Davvaz, B.; Shum, K. P.: A new view of fuzzy hypernear-rings, Inform. sci. 178, 425-438 (2008) · Zbl 1135.16053 · doi:10.1016/j.ins.2007.07.016
[48]Zhou, L.; Wu, W. Z.; Zhang, W. X.: On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators, Inform. sci. 179, 883-898 (2009) · Zbl 1162.03317 · doi:10.1016/j.ins.2008.11.015