zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Study of globally exponential synchronization for the family of Rössler systems. (English) Zbl 1192.37042
Summary: This paper considers the globally exponential synchronization (GES) of the family of Rössler chaotic systems. One pair of the six transmitter-receiver systems is specifically studied, and algebraic criterion for the GES is obtained via proper nonlinear feedback controls. Based on the study of the systems’ structures, appropriate Lyapunov functions are constructed for error systems. The method presented in this paper provides a convenient tool in the practical use of chaos control and synchronization. Numerical simulations are provided to demonstrate the theoretical results.
MSC:
37D45Strange attractors, chaotic dynamics
34C15Nonlinear oscillations, coupled oscillators (ODE)
93B52Feedback control
34C28Complex behavior, chaotic systems (ODE)