zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modified extragradient methods for a system of variational inequalities in Banach spaces. (English) Zbl 1192.47065
The authors establish the equivalence of a system of variational inequalities to a fixed point problem. This equivalence is employed to construct an iterative method for which the strong convergence to the solution is proven.
MSC:
47J25Iterative procedures (nonlinear operator equations)
47J20Inequalities involving nonlinear operators
47H09Mappings defined by “shrinking” properties
47H10Fixed point theorems for nonlinear operators on topological linear spaces
References:
[1]Korpelevich, G.M.: An extragradient method for finding saddle points and for other problems. Ekon. Mat. Metody 12, 747–756 (1976)
[2]Browder, F.E., Petryshyn, W.V.: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 20, 197–228 (1967) · Zbl 0153.45701 · doi:10.1016/0022-247X(67)90085-6
[3]Stampacchi, G.: Formes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)
[4]Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003) · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[5]Zeng, L.C., Yao, J.C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan J. Math. 10, 1293–1303 (2006)
[6]Gol’shtein, E.G., Tret’yakov, N.V.: Modified Lagrangians in convex programming and their generalizations. Math. Program. Study 10, 86–97 (1979)
[7]Iiduka, H., Takahashi, W., Toyoda, M.: Approximation of solutions of variational inequalities for monotone mappings. Pan. Math. J. 14, 49–61 (2004)
[8]Aoyama, K., Iiduka, H., Takahashi, W.: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, 1–13 (2006) · Zbl 1128.47056 · doi:10.1155/FPTA/2006/35390
[9]Kamimura, S., Takahashi, W.: Weak and strong convergence of solutions to accretive operator inclusions and applications. Set-Valued Anal. 8, 361–374 (2000) · Zbl 0981.47036 · doi:10.1023/A:1026592623460
[10]Takahashi, Y., Hashimoto, K., Kato, M.: On sharp uniform convexity, smoothness, and strong type, cotype inequalities. J. Nonlinear Convex Anal. 3, 267–281 (2002)
[11]Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127–1138 (1991) · Zbl 0757.46033 · doi:10.1016/0362-546X(91)90200-K
[12]Reich, S.: Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44, 57–70 (1973) · Zbl 0275.47034 · doi:10.1016/0022-247X(73)90024-3
[13]Browder, F.E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pure Math. 18, 78–81 (1976)
[14]Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227–239 (2005) · Zbl 1068.47085 · doi:10.1016/j.jmaa.2004.11.017
[15]Aslam Noor, M.: Projection-splitting algorithms for general mixed variational inequalities. J. Comput. Anal. Appl. 4, 47–61 (2002)
[16]Ceng, L.C., Wang, C., Yao, J.C.: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67, 375–390 (2008) · Zbl 1147.49007 · doi:10.1007/s00186-007-0207-4
[17]Aslam Noor, M.: Some development in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004) · Zbl 1134.49304 · doi:10.1016/S0096-3003(03)00558-7
[18]Yao, Y., Noor, M.A.: On viscosity iterative methods for variational inequalities. J. Math. Anal. Appl. 325, 776–787 (2007) · Zbl 1115.49024 · doi:10.1016/j.jmaa.2006.01.091
[19]Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217–229 (2000) · Zbl 0964.49007 · doi:10.1006/jmaa.2000.7042
[20]Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)
[21]Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
[22]Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American options. Acta Appl. Math. 21, 263–289 (1990) · Zbl 0714.90004 · doi:10.1007/BF00047211
[23]Aslam Noor, M., Inayat Noor, K.: Self-adaptive projection algorithms for general variational inequalities. Appl. Math. Comput. 151, 659–670 (2004) · Zbl 1053.65048 · doi:10.1016/S0096-3003(03)00368-0
[24]Aslam Noor, M., Inayat Noor, K., Rassias, Th.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993) · Zbl 0788.65074 · doi:10.1016/0377-0427(93)90058-J
[25]Aslam Noor, M.: General variational inequalities. Appl. Math. Lett. 1, 119–121 (1988) · Zbl 0655.49005 · doi:10.1016/0893-9659(88)90054-7
[26]Aslam Noor, M.: Wiener–Hopf equations and variational inequalities. J. Optim. Theory Appl. 79, 197–206 (1993) · Zbl 0799.49010 · doi:10.1007/BF00941894
[27]Aslam Noor, M.: Some algorithms for general monotone mixed variational inequalities. Math. Comput. Model. 29, 1–9 (1999)
[28]Aslam Noor, M., Al-Said, E.A.: Wiener–Hopf equations technique for quasimonotone variational inequalities. J. Optim. Theory Appl. 103, 705–714 (1999) · Zbl 0953.65050 · doi:10.1023/A:1021796326831
[29]Huang, Z., Aslam Noor, M.: An explicit projection method for a system of nonlinear variational inequalities with different (γ,r)-cocoercive mappings. Appl. Math. Comput. 190, 356–361 (2007) · Zbl 1120.65080 · doi:10.1016/j.amc.2007.01.032
[30]Aslam Noor, M.: On iterative methods for solving a system of mixed variational inequalities. Appl. Anal. 87, 99–108 (2008) · Zbl 05246051 · doi:10.1080/00036810701799777
[31]Gossez, J.P., Lami Dozo, E.: Some geometric properties related to the fixed point theory for nonexpansive mappings. Pac. J. Math. 40, 565–573 (1972)
[32]Bruck, R.E. Jr.: Nonexpansive retracts of Banach spaces. Bull. Am. Math. Soc. 76, 384–386 (1970) · Zbl 0224.47034 · doi:10.1090/S0002-9904-1970-12486-7
[33]Bruck, R.E.: Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 47, 341–355 (1973)
[34]Hao, Y.: Strong convergence of an iterative method for inverse strongly accretive operators. J. Inequal. Appl. 2008, 420989 (2008). doi: 10.1155/2008/42098 · Zbl 1153.47053 · doi:10.1155/2008/420989
[35]Zhu, D.L., Marcotte, P.: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J. Optim. 6, 774–726 (1996)
[36]Aslam Noor, M.: Differentiable nonconvex functions and general variational inequalities. Appl. Math. Comput. 199, 623–630 (2008) · Zbl 1147.65047 · doi:10.1016/j.amc.2007.10.023
[37]Aslam Noor, M.: Extended general variational inequalities. Appl. Math. Lett. 22, 182–186 (2009) · Zbl 1163.49303 · doi:10.1016/j.aml.2008.03.007
[38]Aslam Noor, M.: Sensitivity analysis of extended general variational inequalities. Appl. Math. E-Notes 9, 17–26 (2009)
[39]Aslam Noor, M., Inayat Noor, K., Yaqoob, H.: On general mixed variational inequalities. Acta Appl. Math. (2009). doi: 10.1007/s10440-008-9402.4
[40]Aslam Noor, M.: Implicit Wiener–Hopf equations and quasi-variational inequalities. Alban. J. Math. 2, 15–25 (2008)
[41]Aslam Noor, M.: Some iterative algorithms for extended general variational inequalities. Alban. J. Math. 3, 265–275 (2008)
[42]Bnouhachem, A., Aslam Noor, M., Hao, Z.: Some new extragradient iterative methods for variational inequalities. Nonlinear Anal. 70, 1321–1329 (2009) · Zbl 1171.47050 · doi:10.1016/j.na.2008.02.014
[43]Aslam Noor, M.: On a class of general variational inequalities. J. Adv. Math. Stud. 1, 31–42 (2008)
[44]Aslam Noor, M., Inayat Noor, K., Zainab, S.: On a predictor–corrector method for solving invex equilibrium problems. Nonlinear Anal. (2009). doi: 10.1016/j.na.2009.01.235
[45]Aslam Noor, M.: On iterative methods for solving a system of mixed variational inequalities. Appl. Anal. 87, 99–108 (2008) · Zbl 05246051 · doi:10.1080/00036810701799777