zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. (English) Zbl 1192.65111

Summary: We compare two methodologies for the development of exponentially and trigonometrically fitted methods. One is based on the exact integration of functions of the form:

{1,x,x 2 ,,x p ,exp(±wx),xexp(±wx),,x m exp(±wx)},

and the second is based on the exact integration of functions of the form:

{1,x,x 2 ,,x p ,exp(±wx),exp(±2wx),,exp(±mwx)}·

The above functions are used in order to improve the efficiency of the classical methods of any kind for the numerical solution of ordinary differential equations of the form of the Schrödinger equation.

We mention here that the above sets of exponential functions are the two most common sets of exponential functions for the development of the special methods for the efficient solution of the Schrödinger equation. It is first time in the literature in which the efficiency of the above sets of functions is studied and compared with the approximate solution of the Schrödinger equation. We present the error analysis of the above two approaches for the numerical solution of the one-dimensional Schrödinger equation. Finally, numerical results for the resonance problem of the radial Schrödinger equation are presented.

MSC:
65L10Boundary value problems for ODE (numerical methods)
34B05Linear boundary value problems for ODE
34L40Particular ordinary differential operators
Software:
pythNon; SCHOL; VFGEN
References:
[1]Aceto, L., Pandolfi, R., Trigiante, D.: Stability analysis of linear multistep methods via polynomial type variation. JNAIAM J. Numer. Anal. Ind. Appl. Math. 2(1–2), 1–9 (2007)
[2]Anastassi, Z.A., Simos, T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005) · Zbl 1070.81035 · doi:10.1007/s10910-004-1470-8
[3]Anastassi, Z.A., Simos, T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007) · Zbl 1125.81017 · doi:10.1007/s10910-006-9071-3
[4]Avdelas, G., Simos, T.E.: Embedded eighth order methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 26(4), 327–341 (1999) · Zbl 0954.65061 · doi:10.1023/A:1019162701521
[5]Avdelas, G., Konguetsof, A., Simos, T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001) · Zbl 1022.81009 · doi:10.1023/A:1010999203310
[6]Avdelas, G., Konguetsof, A., Simos, T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001) · Zbl 1022.81008 · doi:10.1023/A:1010947219240
[7]Avdelas, G., Kefalidis, E., Simos, T.E.: New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002) · Zbl 1078.65061 · doi:10.1023/A:1021020705327
[8]Chawla, M.M.: Unconditionally stable Noumerov-type methods for second order differential equations. BIT 23, 541–542 (1983) · Zbl 0523.65055 · doi:10.1007/BF01933627
[9]Corless, R.M., Shakoori, A., Aruliah, D.A., Gonzalez-Vega, L.: Barycentric Hermite interpolants for event location in initial-value problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 1–16 (2008)
[10]Corwin, S.P., Thompson, S., White, S.M.: Solving ODEs and DDEs with impulses. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 139–149 (2008)
[11]Dewar, M.: Embedding a general-purpose numerical library in an interactive environment. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 17–26 (2008)
[12]Enright, W.H.: On the use of ’arc length’ and ’defect’ for mesh selection for differential equations. Comput. Lett. 1(2), 47–52 (2005) · doi:10.1163/1574040054047586
[13]Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)
[14]Ixaru, L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht (1984)
[15]Ixaru, L.Gr., Rizea, M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980) · doi:10.1016/0010-4655(80)90062-4
[16]Ixaru, L.Gr., Rizea, M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985) · Zbl 0679.65053 · doi:10.1016/0010-4655(85)90100-6
[17]Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting. Series on Mathematics and Its Applications, vol. 568. Kluwer Academic, Norwell (2004)
[18]Kalogiratou, Z., Simos, T.E.: A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112, 99–112 (2000) · Zbl 1023.65080 · doi:10.1016/S0096-3003(99)00051-X
[19]Kalogiratou, Z., Simos, T.E.: Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232
[20]Kalogiratou, Z., Monovasilis, T., Simos, T.E.: Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods. J. Math. Chem. 37(3), 271–279 (2005) · Zbl 1077.65110 · doi:10.1007/s10910-004-1469-1
[21]Kierzenka, J., Shampine, L.F.: A BVP solver that controls residual and error. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 27–41 (2008)
[22]Knapp, R.: A method of lines framework in Mathematica. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 43–59 (2008)
[23]Konguetsof, A., Simos, T.E.: On the construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Comput. Methods Sci. Eng. 1, 143–165 (2001)
[24]Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976) · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[25]Lipsman, R.L., Osborn, J.E., Rosenberg, J.M.: The SCHOL project at the University of Maryland: using mathematical software in the teaching of sophomore differential equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 81–103 (2008)
[26]Monovasilis, T., Kalogiratou, Z., Simos, T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005) · Zbl 1073.65071 · doi:10.1007/s10910-004-1468-2
[27]Monovasilis, T., Kalogiratou, Z., Simos, T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006) · Zbl 1125.81021 · doi:10.1007/s10910-006-9167-9
[28]Nedialkov, N.S., Pryce, J.D.: Solving differential algebraic equations by Taylor series (III): the DAETS code. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 61–80 (2008)
[29]Psihoyios, G.: A Block Implicit Advanced Step-point (BIAS) algorithm for stiff differential systems. Comput. Lett. 2(1–2), 51–58 (2006) · doi:10.1163/157404006777491972
[30]Psihoyios, G., Simos, T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005) · Zbl 1070.81044 · doi:10.1007/s10910-004-1471-7
[31]Psihoyios, G., Simos, T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006) · Zbl 1125.81022 · doi:10.1007/s10910-006-9168-8
[32]Raptis, A.D.: On the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 24, 1–4 (1981) · doi:10.1016/0010-4655(81)90101-6
[33]Raptis, A.D.: Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28, 427–431 (1983) · doi:10.1016/0010-4655(83)90036-X
[34]Raptis, A.D.: Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)
[35]Raptis, A.D., Allison, A.C.: Exponential–fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978) · doi:10.1016/0010-4655(78)90047-4
[36]Raptis, A.D., Simos, T.E.: A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991) · Zbl 0726.65089 · doi:10.1007/BF01952791
[37]Sakas, D.P., Simos, T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005) · Zbl 1070.81045 · doi:10.1007/s10910-004-1472-6
[38]Simos, T.E.: Numerical solution of ordinary differential equations with periodical solution. Doctoral Dissertation, National Technical University of Athens, Greece (1990) (in Greek)
[39]Simos, T.E.: Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21(4), 359–372 (1997) · Zbl 0900.81031 · doi:10.1023/A:1019147124835
[40]Simos, T.E.: Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. J. Math. Chem. 24(1–3), 23–37 (1998) · Zbl 0915.65084 · doi:10.1023/A:1019102131621
[41]Simos, T.E.: A family of P-stable exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 25(1), 65–84 (1999) · Zbl 0954.65064 · doi:10.1023/A:1019115929321
[42]Simos, T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000) · Zbl 1014.81012 · doi:10.1023/A:1018879924036
[43]Simos, T.E.: Atomic structure computations. In: Hinchliffe, A. (ed.) Chemical Modelling: Applications and Theory, pp. 38–142. Royal Soc. Chem., London (2000)
[44]Simos, T.E.: Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems. In: Chemical Modelling: Application and Theory, vol. 2, pp. 170–270. Royal Soc. Chem., London (2002)
[45]Simos, T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003) · Zbl 1029.65079 · doi:10.1023/A:1025190512508
[46]Simos, T.E.: Numerical methods in chemistry. In: Chemical Modelling: Application and Theory, vol. 3, pp. 271–378. Royal Soc. Chem., London (2004)
[47]Simos, T.E.: Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 7–26 (2004)
[48]Simos, T.E.: Exponentially–fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004) · Zbl 1050.65074 · doi:10.1023/B:JOMC.0000034930.81720.47
[49]Simos, T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006) · Zbl 1125.81023 · doi:10.1007/s10910-006-9170-1
[50]Simos, T.E.: Numerical methods in chemistry. In: Chemical Modelling: Application and Theory, vol. 4, pp. 161–244. Royal Soc. Chem., London (2006)
[51]Simos, T.E.: Stabilization of a four-step exponentially-fitted method and its application to the Schrödinger equation. Int. J. Mod. Phys. C 18(3), 315–328 (2007) · Zbl 1200.65061 · doi:10.1142/S0129183107009261
[52]Simos, T.E.: Numerical methods in chemistry. In: Chemical Modelling: Application and Theory, vol. 5, pp. 350–487. Royal Soc. Chem., London (2008)
[53]Simos, T.E.: In: Numerical methods in chemistry. Chemical Modelling: Application and Theory, vol. 6. Royal Soc. Chem., London (2009, to appear)
[54]Simos, T.E., Vigo-Aguiar, J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001) · Zbl 1003.65082 · doi:10.1023/A:1013185619370
[55]Simos, T.E., Vigo-Aguiar, J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002) · Zbl 1002.65078 · doi:10.1023/A:1016259830419
[56]Simos, T.E., Williams, P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999) · Zbl 0940.65082 · doi:10.1016/S0097-8485(99)00023-6
[57]Simos, T.E., Williams, P.S.: A new Runge-Kutta-Nyström method with phase-lag of order infinity for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45, 123–137 (2002)
[58]Sofroniou, M., Spaletta, G.: Extrapolation methods in Mathematica. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 105–121 (2008)
[59]Spiteri, R.J., Ter, T.-P.: pythNon: a PSE for the numerical solution of nonlinear algebraic equations. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 123–137 (2008)
[60]Tselios, K., Simos, T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003) · Zbl 1029.65134 · doi:10.1023/A:1025140822233
[61]Tselios, K., Simos, T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 35(1), 55–63 (2004) · Zbl 1044.81031 · doi:10.1023/B:JOMC.0000007812.39332.fa
[62]Vigo-Aguiar, J., Simos, T.E.: A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29(3), 177–189 (2001) · Zbl 0995.81506 · doi:10.1023/A:1010972322815
[63]Vigo-Aguiar, J., Simos, T.E.: Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002) · Zbl 1014.81055 · doi:10.1023/A:1022127007340
[64]Weckesser, W.: VFGEN: A code generation tool. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 151–165 (2008)
[65]Wittkopf, A.: Automatic code generation and optimization in Maple. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 167–180 (2008)