zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new and fast implementation for null space based linear discriminant analysis. (English) Zbl 1192.68562
Summary: We present a new implementation for the null space based linear discriminant analysis. The main features of our implementation include: (i) the optimal transformation matrix is obtained easily by only orthogonal transformations without computing any eigendecomposition and singular value decomposition (SVD) – consequently, our new implementation is eigendecomposition-free and SVD-free; (ii) its main computational complexity is from a economic QR factorization of the data matrix and a economic QR factorization of an n×n matrix with column pivoting, here, n is the sample size – thus our new implementation is a fast one. The effectiveness of our new implementation is demonstrated by some real-world data sets.
MSC:
68T10Pattern recognition, speech recognition
Software:
rda
References:
[1]Tao, D.; Li, X.; Wu, X.; Maybank, S. J.: Geometric mean for subspace selection, IEEE transactions on pattern analysis and machine intelligence 31, 260-274 (2009)
[2]Hamsici, O. C.; Martinez, A. M.: Bayes optimality in linear discriminant analysis, IEEE transactions on pattern analysis and machine intelligence 30, 647-657 (2008)
[3]Guo, Y.; Hastie, T.; Tibshirani, R.: Regularized linear discriminant analysis and its application in microarray, Biostatistics 8, 86-100 (2007) · Zbl 1170.62382 · doi:10.1093/biostatistics/kxj035
[4]H. Park, B. Drake, S. Lee, C. Park, Fast linear discriminant analysis using QR decomposition and regularization, Technical Report GT-CSE-07-21.
[5]Tao, D.; Li, X.; Wu, X.; Maybank, S. J.: General averaged divergence analysis, Icdm, 302-311 (2007)
[6]J. Ye, Least squares linear discriminant analysis, in: The Twenty-Fourth International Conference on Machine Learning (ICML 2007), 2007, pp. 1087–1093.
[7]Wang, L.; Shen, X.: On L1-norm multiclass support vector machines: methodology and theory, Journal of the American statistical association 102, 583-594 (2007) · Zbl 1172.62317 · doi:10.1198/016214506000001383 · doi:http://caliban.asa.catchword.org/vl=11974411/cl=11/nw=1/rpsv/cw/asa/01621459/v102n478/s22/p583
[8]Bishop, C. M.: Pattern recognition and machine learning, (2006)
[9]Ye, J.; Xiong, T.: Computational and theoretical analysis of null space and orthogonal linear discriminant analysis, Journal of machine learning research 7, 1183-1204 (2006) · Zbl 1222.62082 · doi:http://www.jmlr.org/papers/v7/ye06a.html
[10]Hall, P.; Marron, J. S.; Neeman, A.: Geometric representation of high dimensional, low sample size data, Journal of royal statistical society series B 67, 427-444 (2005) · Zbl 1069.62097 · doi:10.1111/j.1467-9868.2005.00510.x
[11]Ye, J.: Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems, Journal of machine learning research 6, 483-502 (2005) · Zbl 1222.62081 · doi:http://www.jmlr.org/papers/v6/ye05a.html
[12]Howland, P.; Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition, IEEE transactions on pattern analysis and machine intelligence 26, 995-1006 (2004)
[13]Ye, J.; Janardan, R.; Park, C. H.; Park, H.: An optimization criterion for generalized discriminant analysis on undersampled problems, IEEE transactions on pattern analysis and machine intelligence 26, 982-994 (2004)
[14]Dai, D. Q.; Yuen, P. C.: Regularized discriminant analysis and its application to face recognition, Pattern recognition 36, 845-847 (2003) · Zbl 1032.68129 · doi:10.1016/S0031-3203(02)00092-4
[15]Howland, P.; Jeon, M.; Park, H.: Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition, SIAM journal of matrix analysis and applications 25, 165-179 (2003) · Zbl 1061.68135 · doi:10.1137/S0895479801393666
[16]Lu, J.; Plataniotis, K. N.; Venetsanopoulos, A. N.: Face recognition using LDA based algorithms, IEEE transactions on neural networks 14, 195-200 (2003)
[17]Baldi, P.; Hatfield, G. W.: DNA microarrays and gene expression: from experiments to data analysis and modeling, (2002)
[18]Dudoit, S.; Fridlyand, J.; Speed, T. P.: Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American statistical association 97, 77-87 (2002) · Zbl 1073.62576 · doi:10.1198/016214502753479248
[19]R. Huang, Q. Liu, H. Lu, S. Ma, Solving the small sample size problem of LDA, in: Proceedings of International Conference on Pattern Recognition, 2002, pp. 29–32.
[20]Jolliffe, I. T.: Principal component analysis, (2002)
[21]Duda, R. Q.; Hart, P. E.; Stork, D. G.: Pattern classification, (2001) · Zbl 0968.68140
[22]Jin, Z.; Yang, J. Y.; Hu, Z. S.; Lou, Z.: Face recognition based on the uncorrelated discriminant transformation, Pattern recognition 34, 1405-1416 (2001) · Zbl 0978.68118 · doi:10.1016/S0031-3203(00)00084-4
[23]Jin, Z.; Yang, J. Y.; Tang, Z. M.; Hu, Z. S.: A theorem on the uncorrelated optimal discriminant vectors, Pattern recognition 34, 2041-2047 (2001) · Zbl 0999.68189 · doi:10.1016/S0031-3203(00)00135-7
[24]Loog, M.; Duin, R. P. W.; Haeb-Umbach, R.: Multiclass linear dimension reduction by weighted pairwise Fisher criteria, IEEE transactions on pattern analysis and machine intelligence 23, 762-766 (2001)
[25]Chen, L.; Liao, H. M.; Ko, M.; Lin, J.; Yu, G.: A new LDA-based face recognition system which can solve the small sample size problem, Pattern recognition 33, 1713-1726 (2000)
[26]Lotlikar, R.; Kothari, R.: Fractional-step dimensionality reduction, IEEE transactions on pattern analysis and machine intelligence 22, 623-627 (2000)
[27]Kowalski, G.: Information retrieval systems: theory and implementation, (1997)
[28]Golub, G. H.; Van Loan, C. F.: Matrix computations, (1996)
[29]Swets, D. L.; Weng, J.: Using discriminant eigenfeatures for image retrieval, IEEE transactions on pattern analysis and machine intelligence 18, 831-836 (1996)
[30]Berry, M. W.; Dumais, S. T.; Obrie, G. W.: Using linear algebra for intelligent information retrieval, SIAM review 37, 573-595 (1995) · Zbl 0842.68026 · doi:10.1137/1037127
[31]Frakes, W. B.; Baeza-Yates, R.: Information retrieval: data structures and algorithms, (1992)
[32]Mclachlan, G. J.: Discriminant analysis and statistical pattern recognition, (1992)
[33]Cover, T. M.; Thomas, J. A.: Elements of information theory, (1991) · Zbl 0762.94001
[34]Fukunaga, K.: Introduction to statistical pattern recognition, (1990) · Zbl 0711.62052
[35]Friedman, J. H.: Regularized discriminant analysis, Journal of the American statistical association 84, 165-175 (1989)
[36]Jain, A. K.; Dubes, R. C.: Algorithms for clustering data, (1988) · Zbl 0665.62061
[37]Duchene, L.; Leclerq, S.: An optimal transformation for discriminant and principal component analysis, IEEE transactions on pattern analysis and machine intelligence 10, 978-983 (1988) · Zbl 0655.62064 · doi:10.1109/34.9121
[38]Paige, C. C.; Saunders, M. A.: Towards a generalized singular value decomposition, SIAM journal on numerical analysis 18, 398-405 (1981) · Zbl 0471.65018 · doi:10.1137/0718026
[39]Van Loan, C. F.: Generalizing the singular value decomposition, SIAM journal on numerical analysis 13, 76-83 (1976) · Zbl 0338.65022 · doi:10.1137/0713009
[40]Ye, J.; Li, Q.; Xiong, H.; Park, H.; Janardan, R.; Kumar, V.: IDR/QR: an incremental dimension reduction algorithm via QR decomposition, IEEE transaction on knowledge and data engineering 17, No. 9, 1208-1221 (2005)
[41]Zuo, W.; Wang, K.; Zhang, D.: Improvement on null space LDA for face recognition: A symmetry consideration, (2005)
[42]J. Yang, J.Y. Yang, Why can LDA be performed in PCA transformed space, Pattern Recognition 36 (2) (2003) 563–566.
[43]J. Ye, T. Xiong, Null space versus orthogonal linear discriminant analysis, in: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006.