zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometric nonlinear formulation and discretization method for a rectangular plate undergoing large overall motions. (English) Zbl 1192.74151
Summary: In the present paper, the geometric nonlinear formulation is developed for dynamic stiffening of a rectangular plate undergoing large overall motions. The dynamic equations, which take into account the stiffening terms, are derived based on the virtual power principle. Finite element method is employed for discretization of the plate. The simulation results of a rotating rectangular plate obtained by using such geometric nonlinear formulation are compared with those obtained by the conventional linear method without consideration of the stiffening effects. The application limit of the conventional linear method is clarified according to the frequency error. Furthermore, the accuracy of the assumed mode method is investigated by comparison of the results obtained by using the present finite element method and those obtained by using the assumed mode method.
74H15Numerical approximation of solutions for dynamical problems in solid mechanics
74K20Plates (solid mechanics)
74S05Finite element methods in solid mechanics