zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model. (English) Zbl 1192.93060
Summary: LuGre model has been widely used in dynamic friction modeling and compensation. However, there are some practical difficulties when applying it to systems experiencing large range of motion speeds such as the linear motor drive system studied in the article. This article first details the digital implementation problems of the LuGre model based dynamic friction compensation. A modified model is then presented to overcome those shortcomings. The proposed model is equivalent to LuGre model at low speed, and the static friction model at high speed, with a continuous transition between them. A discontinuous projection based Adaptive Robust Controller (ARC) is then constructed, which explicitly incorporates the proposed modified dynamic friction model for a better friction compensation. Nonlinear observers are built to estimate the unmeasurable internal state of the dynamic friction model. On-line parameter adaptation is utilized to reduce the effect of various parametric uncertainties, while certain robust control laws are synthesized to effectively handle various modeling uncertainties for a guaranteed robust performance. The proposed controller is also implemented on a linear motor driven industrial gantry system, along with controllers with the traditional static friction compensation and LuGre model compensation. Extensive comparative experimental results have been obtained, revealing the instability when using the traditional LuGre model for dynamic friction compensation at high speed experiments and the improved tracking accuracy when using the proposed modified dynamic friction model. The results validate the effectiveness of the proposed approach in practical applications.
MSC:
93C40Adaptive control systems
93B35Sensitivity (robustness) of control systems
93C41Control problems with incomplete information
93C15Control systems governed by ODE
93C05Linear control systems