zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Kalman filter-based adaptive control for networked systems with unknown parameters and randomly missing outputs. (English) Zbl 1192.93118
Summary: This paper investigates the problem of adaptive control for networked control systems with unknown model parameters and randomly missing outputs. In particular, for a system with the autoregressive model with exogenous input placed in a network environment, the randomly missing output feature is modeled as a Bernoulli process. Then, an output estimator is designed to online estimate the missing output measurements, and further a Kalman filter-based method is proposed for parameter estimation. Based on the estimated output and the available output, and the estimated model parameters, an adaptive control is designed to make the output track the desired signal. Convergence properties of the proposed algorithms are analyzed in detail. Simulation examples illustrate the effectiveness of the proposed method.
MSC:
93E11Filtering in stochastic control
93C40Adaptive control systems
93E03General theory of stochastic systems