zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Transformations between some special matrices. (English) Zbl 1193.15028
Summary: Special matrices are very useful in signal processing and control systems. This paper studies the transformations and relationships between some special matrices. The conditions that a matrix is similar to a companion matrix are derived. It is proved that a companion matrix is similar to a diagonal matrix or Jordan matrix, and the transformation matrices between them are given. Finally, we apply the similarity transformation and the companion matrix to system identification.
MSC:
15B34Boolean and Hadamard matrices
References:
[1]Zhour, Z. Al; Kilicman, A.: Some new connections between matrix products for partitioned and non-partitioned matrices, Computers mathematics with applications 54, No. 6, 763-784 (2007) · Zbl 1146.15014 · doi:10.1016/j.camwa.2006.12.045
[2]Ding, F.; Chen, T.: Iterative least squares solutions of coupled Sylvester matrix equations, Systems control letters 54, No. 2, 95-107 (2005) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[3]Ding, F.; Chen, T.: On iterative solutions of general coupled matrix equations, SIAM journal on control and optimization 44, No. 6, 2269-2284 (2006) · Zbl 1115.65035 · doi:10.1137/S0363012904441350
[4]Kilicman, A.; Zhour, Z. Al: Vector least-squares solutions for coupled singular matrix equations, Journal of computational and applied mathematics 206, No. 2, 1051-1069 (2007) · Zbl 1132.65034 · doi:10.1016/j.cam.2006.09.009
[5]Dehghan, M.; Hajarian, M.: An iterative algorithm for solving a pair of matrix equations AYB=E, CYD=F over generalized centro-symmetric matrices, Computers mathematics with applications 56, No. 12, 3246-3260 (2008) · Zbl 1165.15301 · doi:10.1016/j.camwa.2008.07.031
[6]Dehghan, M.; Hajarian, M.: Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B1+A2X2B2=C, Mathematical and computer modelling 49, No. 9–10, 1937-1959 (2009) · Zbl 1171.15310 · doi:10.1016/j.mcm.2008.12.014
[7]Dehghan, M.; Hajarian, M.: A lower bound for the product of eigenvalues of solutions to matrix equations, Applied mathematics letters 22, No. 12, 1786-1788 (2009) · Zbl 1190.15022 · doi:10.1016/j.aml.2009.06.020
[8]Ding, F.; Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations, IEEE transactions on automatic control 50, No. 8, 1216-1221 (2005)
[9]Mukaidani, H.; Yamamoto, S.; Yamamoto, T.: A numerical algorithm for finding solution of cross-coupled algebraic Riccati equations, IEICE transactions on fundamentals of electronics communications and computer sciences 91A, No. 2, 682-685 (2008)
[10]Zhou, B.; Duan, G. R.; Li, Z. Y.: A Stein matrix equation approach for computing coprime matrix fraction description, IET control theory and applications 3, No. 6, 691-700 (2009)
[11]Zhou, B.; Li, Z. Y.; Duan, G. R.: Solutions to a family of matrix equations by using the Kronecker matrix polynomials, Applied mathematics and computation 212, No. 2, 327-336 (2009) · Zbl 1181.15020 · doi:10.1016/j.amc.2009.02.021
[12]Ding, F.; Liu, P. X.; Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Applied mathematics and computation 197, No. 1, 41-50 (2008) · Zbl 1143.65035 · doi:10.1016/j.amc.2007.07.040
[13]Xie, L.; Ding, J.; Ding, F.: Gradient based iterative solutions for general linear matrix equations, Computers mathematics with applications 58, No. 7, 1441-1448 (2009) · Zbl 1189.65083 · doi:10.1016/j.camwa.2009.06.047
[14]Ding, F.; Chen, T.: Hierarchical gradient based identification of multivariable discrete-time systems, Automatica 41, No. 2, 315-325 (2005) · Zbl 1073.93012 · doi:10.1016/j.automatica.2004.10.010
[15]Ding, F.; Chen, T.: Hierarchical least squares identification methods for multivariable systems, IEEE transactions on automatic control 50, No. 3, 397-402 (2005)
[16]Ding, F.; Chen, T.: Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE transactions on circuits and systems 52, No. 6, 1179-1187 (2005)
[17]Golub, G. H.; Van Loan, C. F.: Matrix computations, (1996)
[18]Hou, S. H.; Pang, W. K.: Inversion of confluent Vandermonde matrices, Computers mathematics with applications 43, No. 12, 1539-1547 (2002)
[19]Ding, F.; Chen, T.: Performance analysis of multi-innovation gradient type identification methods, Automatica 43, No. 1, 1-14 (2007) · Zbl 1140.93488 · doi:10.1016/j.automatica.2006.07.024
[20]Ding, F.; Liu, P. X.; Yang, H. Z.: Parameter identification and intersample output estimation for dual-rate systems, IEEE transactions on systems, man, and cybernetics, part A: systems and humans 38, No. 4, 966-975 (2008)
[21]Ding, F.; Liu, P. X.; Liu, G.: Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal processing 89, No. 10, 1883-1890 (2009) · Zbl 1178.94137 · doi:10.1016/j.sigpro.2009.03.020
[22]Ding, F.; Qiu, L.; Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45, No. 2, 324-332 (2009) · Zbl 1158.93365 · doi:10.1016/j.automatica.2008.08.007
[23]Han, L. L.; Ding, F.: Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital signal processing 19, No. 4, 545-554 (2009)
[24]Han, L. L.; Ding, F.: Identification for multirate multi-input systems using the multi-innovation identification theory, Computers mathematics with applications 57, No. 9, 1438-1449 (2009) · Zbl 1186.93076 · doi:10.1016/j.camwa.2009.01.005
[25]Ding, J.; Ding, F.: The residual based extended least squares identification method for dual-rate systems, Computers mathematics with applications 56, No. 6, 1479-1487 (2008) · Zbl 1155.93435 · doi:10.1016/j.camwa.2008.02.047
[26]Wang, D. Q.; Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein–Wiener ARMAX systems, Computers mathematics with applications 56, No. 12, 3157-3164 (2008) · Zbl 1165.65308 · doi:10.1016/j.camwa.2008.07.015
[27]Liu, Y. J.; Xiao, Y. S.; Zhao, X. L.: Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Applied mathematics and computation 215, No. 4, 1477-1483 (2009) · Zbl 1177.65095 · doi:10.1016/j.amc.2009.07.012