zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Properties of stability and Hopf bifurcation for a HIV infection model with time delay. (English) Zbl 1193.34152
Summary: We consider the classical mathematical model with saturation response of the infection rate and time delay. By stability analysis we obtain sufficient conditions for the global stability of the infection-free steady state and the permanence of the infected steady state. Numerical simulations are carried out to explain the mathematical conclusions.
MSC:
34K20Stability theory of functional-differential equations
34K18Bifurcation theory of functional differential equations
92D30Epidemiology
References:
[1]Perelson, A. S.; Essunger, P.; Ho, D. D.: Dynamics of HIV-1 and CD4+ lymphocytes in vivo, Aids 11, No. Suppl. A, S17-S24 (1997)
[2]Song, X.; Neumann, A. U.: Global stability and periodic solution of the viral dynamics, J. math. Anal. appl. 329, 281-297 (2007) · Zbl 1105.92011 · doi:10.1016/j.jmaa.2006.06.064
[3]Wei, X.; Ghosh, S.; Taylor, M.; Johnson, V.; Emini, E.; Deutsch, P.; Lifson, J.; Bonhoeffer, S.; Nowak, M.; Hahn, B.; Saag, S.; Shaw, G.: Viral dynamics in human immunodeficiency virus type 1 infection, Nature 373, 117 (1995)
[4]Wang, X.; Tao, Y.: Lyapunov function and global properties of virus dynamics with immune response, Int. J. Biomath. 1, No. 4, 443-448 (2008) · Zbl 1156.92322 · doi:10.1142/S1793524508000382
[5]De Boer, R. J.; Perelson, A. S.: Target cell limited and immune control models of HIV infection: a comparison, J. theor. Biol. 190, 201-214 (1998)
[6]Perelson, A.; Nelson, P.: Mathematical analysis of HIV-1 dynamics in vivo, SIAM rev. 41, No. 1, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[7]Culshaw, R. V.; Ruan, S.: A delay-differential equation model of HIV infection of D4+ T-cells, Math. biosci. 165, 27-39 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[8]Culshaw, R. V.; Ruan, S.; Webb, G.: A mathematical model of cell-to-cell HIV-1 that include a time delay, J. math. Biol. 46, 425-444 (2003) · Zbl 1023.92011 · doi:10.1007/s00285-002-0191-5
[9]Nelson, P. W.; Perelson, A. S.: Mathematical analysis of a delay differential equation models of HIV-1 infection, Math. biosci. 179, 73-94 (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[10]Tam, J.: Delay effect in a model for virus replication, IMA J. Math. appl. Med. biol. 16, No. 1, 29-37 (1999) · Zbl 0914.92012
[11]Song, X.; Cheng, S.: A delay-differential equation model of HIV infection of CD4+ T-cells, J. koreal math. Soc. 42, No. 5, 1071-1086 (2005) · Zbl 1078.92042 · doi:10.4134/JKMS.2005.42.5.1071
[12]Hale, J. K.; Waltman, P.: Persistence in infinite-dimensional systems, SIAM J. Math. anal. 20, 388-396 (1989) · Zbl 0692.34053 · doi:10.1137/0520025
[13]Beretta, E.; Kuang, Y.: Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. anal. 33, 1144-1165 (2002) · Zbl 1013.92034 · doi:10.1137/S0036141000376086