zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some solutions of the linear and nonlinear Klein-Gordon equations using the optimal homotopy asymptotic method. (English) Zbl 1193.35190
Summary: We investigate the effectiveness of the Optimal Homotopy Asymptotic Method (OHAM) in solving time dependent partial differential equations. For this, we consider the homogeneous, non-homogeneous, linear and nonlinear Klein-Gordon equations with boundary conditions. The results reveal that the method is explicit, effective, and easy to use.
MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35A35Theoretical approximation to solutions of PDE
35A30Geometric theory for PDE, characteristics, transformations
References:
[1]Caudrey, P. J.; Eilbeck, I. C.; Gibbon, J. D.: The sine-Gordon equation as a model classical field theories, Nuovo cimento 25, 497-511 (1975)
[2]Deeba, E. Y.; Khuri, S. A.: A decomposition method for solving the nonlinear Klein – Gordon equation, Journal of computational physics 124, 442-448 (1996) · Zbl 0849.65073 · doi:10.1006/jcph.1996.0071
[3]El-Sayed, S. M.: The decomposition method for studying the Klein – Gordon equation, Chaos, solitons & fractals 18, 1025-1030 (2001) · Zbl 1068.35069 · doi:10.1016/S0960-0779(02)00647-1
[4]Ganji, D. D.; Rafei, M.: Solitary wave solution for a generalized Hirota – satsuma coupled KdV equation by homotopy perturbation method, Physics letters A 356, 131-137 (2006) · Zbl 1160.35517 · doi:10.1016/j.physleta.2006.03.039
[5]He, J. H.: An approximation sol. Technique depending upon an artificial parameter, Communications in nonlinear science and numerical simulation 3, 92-97 (1998)
[6]He, J. H.: Periodic solution and bifurcations of delay-differential equations, Physics letters A 347, No. 4 – 6, 228-230 (2005) · Zbl 1195.34116 · doi:10.1016/j.physleta.2005.08.014
[7]Herişanu, Nicolae; Marinca, Vasile; Dordea, Toma; Madescu, Gheorghe: A new analytical approach to nonlinear vibration of an electrical machine, Proceedings of the romanian Academy, series A 9, No. 3, 229-236 (2008)
[8]S.J. Liao, On the Proposed Homotopy Analysis Technique for Nonlinear Problems and its Applications, Ph.D. Dissertation, Shanghai Jio Tong University, Shanghai, China, 1992.
[9]Liao, S. J.; Chwang, A. T.: Application of homotopy analysis method in nonlinear oscillations, ASME journal applied mechanics 65, 914 (1998)
[10]Marinca, Vasile; Herişanu, Nicolae: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, International communications in heat and mass transfer 35, 710-715 (2008)
[11]Marinca, Vasile; Herişanu, Nicolae; Bota, Constantin; Marinca, Bogdan: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate, Applied mathematics letters 22, 245-251 (2009)
[12]Marinca, Vasile; Herişanu, Nicolae; Nemeş, Iacob: Optimal homotopy asymptotic method with application to thin film flow, Central European journal of physics 6, No. 3, 648-653 (2008)
[13]Siddiqui, A. M.; Irum, S.; Ansari, A. R.: A solution of the unsteady squeezing flow of a viscous fluid between parallel plates using the homotopy perturbation method, Journal of mathematical modelling and analysis 13, No. 4, 565-576 (2008) · Zbl 1156.76062 · doi:10.3846/1392-6292.2008.13.565-576
[14]Wazwaz, A. M.: The modified decomposition method for analytic treatment of differential equations, Applied mathematics and computation 173, 165-176 (2006) · Zbl 1089.65112 · doi:10.1016/j.amc.2005.02.048
[15]Wazwaz, A. M.: The tanh and the sine – cosine methods for compact and noncompact solutions of the nonlinear Klein – Gordon equation, Applied mathematics and computation 167, 1179-1195 (2005) · Zbl 1082.65584 · doi:10.1016/j.amc.2004.08.006