zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of the near-identical chaotic systems with the unknown parameters. (English) Zbl 1193.37046
Summary: The synchronization of the near-identical chaotic systems with the unknown parameters is investigated. It can be classified into two cases, i.e., if the matrix I+J is uniformly negative definite in y, the synchronization is achieved without couple, or else, it is obtained with the unidirectional couple, by constructing parameter update law. The theoretical results of the synchronization are, respectively, simulated by the non-linear dynamical software, WinPP. The numerical simulation results are in very good agreement with the theoretical results. It indicates that the method employed in this paper is correct.
MSC:
37D45Strange attractors, chaotic dynamics
34D20Stability of ODE
37N35Dynamical systems in control
References:
[1]Boccalatti, S.: The sychronization of chaotic systems, Phys. rep. 366, No. 1 – 2, 1-101 (2003)
[2]Pecora, L. M.: Fundamentals of synchronization in chaotic system, concepts and application, Chaos 7, No. 4, 520-543 (1997) · Zbl 0933.37030 · doi:10.1063/1.166278 · doi:http://ojps.aip.org/journal_cgi/getabs?KEY=CHAOEH&cvips=CHAOEH000007000004000520000001&gifs=Yes
[3]Blekhman, I. I.: Synchronization in science and technology, (1988)
[4]Blekhman, I. I.; Landa, P. S.; Rosenblum, M. G.: Synchronization and chaotization in interacting dynamical system, Appl. mech. Rev. 48, No. 11, 733-752 (1995)
[5]Pecora, L. M.; Carron, T. L.: Synchronization in chaotic system, Phys. rev. Lett. 64, 821-823 (1990)
[6]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaotic oscillators, Phys. rev. Lett. 76, No. 11, 1840-1847 (1996)
[7]Voss, H. U.: Anticipating chaotic synchronization, Phys. rev. E 61, No. 5, 5115-5119 (2000)
[8]Masoller, C.: Anticipation in the synchronization of chaotic time-delay systems, Physica A 295, No. 1 – 2, 301-304 (2001) · Zbl 0978.37022 · doi:10.1016/S0378-4371(01)00092-9
[9]Hohl, A.: Quasiperiodic synchronization for two delay-coupled semiconductor lasers, Phys. rev. A 59, No. 5, 27-28 (2000)
[10]Shahverdiev, E. M.; Sivaprakasam, S.; Shore, K. A.: Lag synchronization in time-delayed systems, Phys. lett. A 292, No. 6, 320-324 (2002) · Zbl 0979.37022 · doi:10.1016/S0375-9601(01)00824-6
[11]Shahverdiev, E. M.: Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays, Chaos soliton fract. 29, No. 4, 838-844 (2006)
[12]Rulkov, V. S.: Generalized synchronization of chaos in directionally coupled chaotic system, Phys. rev. E 51, No. 2, 980-994 (1995)
[13]Yau, H. T.: Generalized projective chaos synchronization of gyroscope systems subjected to dead-zone nonlinear inputs, Phys. lett. A 372, 2380-2385 (2008) · Zbl 1220.70021 · doi:10.1016/j.physleta.2007.11.047
[14]Yau, H. T.; Yan, J. J.: Chaos synchronization of different chaotic systems subjected to input nonlinearity, Appl. math. Comput. 197, 775-788 (2008) · Zbl 1135.65409 · doi:10.1016/j.amc.2007.08.014
[15]Yau, H. T.: Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping, Chaos soliton fract. 34, No. 4, 1357-1365 (2007) · Zbl 1142.93375 · doi:10.1016/j.chaos.2006.04.016
[16]Yau, H. T.; Kuo, C. L.; Yan, J. J.: Fuzzy sliding mode control for a class of chaos synchronization with uncertainties, Int. J. Nonlinear sci. Numer. simulat. 7, No. 2, 333-338 (2006)
[17]Yau, H. T.; Lin, J. S.; Yan, J. J.: Synchronization control for a class of chaotic systems with uncertainties, Int. J. Bifurcat. chaos 15, No. 7, 2235-2246 (2005) · Zbl 1092.93594 · doi:10.1142/S0218127405013204
[18]Yau, H. T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos soliton fract. 22, No. 2, 341-347 (2004) · Zbl 1060.93536 · doi:10.1016/j.chaos.2004.02.004
[19]Cruz-Hernández, C.; Romero-Haros, N.: Communicating via synchronized time-delay Chua’s circuit, Commun. nonlinear sci. Numer. simulat. 13, No. 3, 645-659 (2008) · Zbl 1121.94028 · doi:10.1016/j.cnsns.2006.06.010
[20]Shu, Y. L.; Zhang, A. B.; Tang, B. D.: Switching among three different kinds of synchronization for delay chaotic systems, Chaos soliton fract. 23, No. 2, 563-571 (2005) · Zbl 1061.93510 · doi:10.1016/j.chaos.2004.05.043
[21]Salarieh, H.; Shahrokhi, M.: Adaptive synchronization of two different chaotic systems with time varying unknown parameters, Chaos soliton fract. 37, No. 1, 125-136 (2008) · Zbl 1147.93397 · doi:10.1016/j.chaos.2006.08.038
[22]Salarieh, H.; Alasty, A.: Adaptive control of chaotic systems with stochastic time varying unknown parameters, Chaos soliton fract. 38, No. 1, 168-177 (2008) · Zbl 1142.93358 · doi:10.1016/j.chaos.2006.10.063
[23]Wang, Z. L.: Anti-synchronization in two non-identical hyper-chaotic systems with known or unknown parameter, Commun. nonlinear sci. Numer. simulat. (2008)
[24]Narendra, K. S.; Annaswamy, A. M.: Stable adaptive systems, (1989) · Zbl 0758.93039
[25]Sira-Ramíre, Z. H.; Cruz-Hernández, C.: Synchronization of chaotic systems: a generalized Hamiltonian systems approach, Int. J. Bifurcat. chaos 11, No. 5, 1381-1395 (2001) · Zbl 1206.37053 · doi:10.1142/S0218127401002778